I want to sample datas using weighted distribution (probability)
The examples are like below:
class distribution:
doc_distribution = {0: 40, 1: 18, 2: 8, 3: 598, ... , 9: 177}
I would to make the batch of dataset by equal probability of class.
total_dataset = 0
init_dist = []
for value in doc_distribution.values():
total_dataset += value
for value in doc_distribution.values():
init_dist.append(value / total_dataset)
target_dist = []
for value in doc_distribution.values():
target_dist.append(1 / len(doc_distribution))
Then, I make input_fn of tf.estimator to export the model,
def input_fn(ngram_words, labels, opts):
dataset = tf.data.Dataset.from_tensor_slices((ngram_words, labels))
rej = tf.data.experimental.rejection_resample(class_func = lambda _, c : c, \
target_dist = target_dist, initial_dist = init_dist, seed = opts.seed)
dataset = dataset.shuffle(buffer_size = len(ngram_words) * 2, seed = opts.seed)
return dataset.batch(20)
Finally, I could get the result of rejection_resample as below:
for next_elem in a:
k = next_elem[1]
break
dist = {}
for val in np.array(k):
if val in dist:
dist[val] += 1
else:
dist[val] = 1
print(dist)
The result is: {3: 33, 8: 14, 4: 17, 7: 5, 5: 10, 9: 12, 0: 6, 6: 3}
I don't know why rejection_resample doesn't work well, I just want to extract samples equally.
How should I fix it?
Is there any methods to sample equally in input_fn of tf.estimator?
We can use tf.data.experimental.sample_from_datasets instead of rejection_resample.
unbatched_dataset = [(dataset.filter(lambda _, label: label == i)) for i in range(0, classify_num)]
weights = [1 / classify_num] * classify_num
balanced_ds = tf.data.experimental.sample_from_datasets(unbatched_dataset, weights, seed=opts.seed)
dataset = balanced_ds.shuffle(buffer_size = 1000, seed = opts.seed).repeat(opts.epochs)
Related
I was trying to run my yolov5 custom model on cpu and I got this error.
this is the github page I have used : https://github.com/Amelia0911/onnxruntime-for-yolov5
import onnxruntime
from models.utils import *
import time
IMAGE_SIZE = (416, 416)
CONF_TH = 0.3
NMS_TH = 0.45
CLASSES = 80
model = onnxruntime.InferenceSession("models_train/bestnone.onnx")
anchor_list = [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]]
stride = [8, 16, 32]
def draw(img, boxinfo, dst, id):
for *xyxy, conf, cls in boxinfo:
label = '{}|{}'.format(int(cls), '%.2f' % conf)
plot_one_box(xyxy, img, label=label, color=[0, 0, 255])
cv2.imencode('.jpg', img)[1].tofile(dst)
def detect(image):
img = cv2.resize(image,IMAGE_SIZE)
img = img.transpose(2, 0, 1)
dataset = (img, image)
img = dataset[0].astype('float32')
img_size = [dataset[0].shape[1], dataset[0].shape[2]]
img /= 255.0
img = img.reshape(1, 3, img_size[0], img_size[1])
inputs = {model.get_inputs()[0].name: img}
pred = torch.tensor(model.run(None, inputs)[0])
anchor = torch.tensor(anchor_list).float().view(3, -1, 2)
area = img_size[0]*img_size[1]
size = [int(area/stride[0]**2), int(area/stride[1]**2), int(area/stride[2]**2)]
feature = [[int(j/stride[i]) for j in img_size] for i in range(3)]
y = []
y.append(pred[:, :size[0]*3, :])
y.append(pred[:, size[0]*3:size[0]*3+size[1]*3, :])
y.append(pred[:, size[0]*3+size[1]*3:, :])
grid = []
for k, f in enumerate(feature):
grid.append([[i, j] for j in range(f[0]) for i in range(f[1])])
z = []
for i in range(3):
src = y[i]
xy = src[..., 0:2] * 2. - 0.5
wh = (src[..., 2:4] * 2) ** 2
dst_xy = []
dst_wh = []
for j in range(3):
dst_xy.append((xy[:, j*size[i]:(j+1)*size[i], :] + torch.tensor(grid[i])) * stride[i])
dst_wh.append(wh[:, j*size[i]:(j+1)*size[i], :] * anchor[i][j])
src[..., 0:2] = torch.from_numpy(np.concatenate((dst_xy[0], dst_xy[1], dst_xy[2]), axis=1))
src[..., 2:4] = torch.from_numpy(np.concatenate((dst_wh[0], dst_wh[1], dst_wh[2]), axis=1))
z.append(src.view(1, -1, CLASSES+5)) #85
pred = torch.cat(z, 1)
pred = nms(pred, CONF_TH, NMS_TH)
for det in pred:
if det is not None and len(det):
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], dataset[1].shape).round()
if det == None:
return np.array([])
return det
if __name__ == '__main__':
import time
src = 'Temp-640x640.jpg'
t1 = time.time()
img = cv2.imdecode(np.fromfile(src, dtype=np.uint8), -1)
print(IMAGE_SIZE)
results = detect(img)
t2 = time.time()
print(results)
print("onnxruntime time = ", t2 - t1)
if results is not None and len(results):
draw(img, results, 'dst3.jpg', str(id))
print('Down!')
when I run this code I got the following error:
File "C:\Users\acer\.spyder-py3\metallic surface defect detection\3_onnx_cpu_detec.py", line 85, in <module>
results = detect(img)
File "C:\Users\acer\.spyder-py3\metallic surface defect detection\3_onnx_cpu_detec.py", line 30, in detect
img = img.reshape(1, 3, img_size[0], img_size[1])
ValueError: cannot reshape array of size 692224 into shape (1,3,416,416)
I think it is a color channel issue. I have tried to fix it .But it doesn't work .If someone know how to fix it please inform me.Thanks in advance
I have an optimization problem of wagons repairs.
'Lon': 125, # London
'Ber': 175, # Berlin
'Maa': 225, # Maastricht
'Ams': 250, # Amsterdam
'Utr': 225, # Utrecht
'Hag': 200 # The Hague
}
Supply = {
'Arn': 600, # Arnhem
'Gou': 650 # Gouda
}
T = {
('Lon','Arn'): 1000,
('Lon','Gou'): 2.5,
('Ber','Arn'): 2.5,
('Ber','Gou'): 1000,
('Maa','Arn'): 1.6,
('Maa','Gou'): 2.0,
('Ams','Arn'): 1.4,
('Utr','Arn'): 0.8,
('Utr','Gou'): 1.0,
('Hag','Arn'): 1.4,
('Hag','Gou'): 0.8
}
T is a cost for all permitted routes. I defined the model and objective function.
# Step 0: Create an instance of the model
model = ConcreteModel()
model.dual = Suffix(direction=Suffix.IMPORT)
# Step 1: Define index sets
CUS = list(Demand.keys())
SRC = list(Supply.keys())
# Step 2: Define the decision
model.x = Var(list(T), domain = NonNegativeReals)
# Step 3: Define Objective
model.Cost = Objective(
expr = sum([T[i]*model.x[i] for i in model.x]),
sense = minimize)
But I have problems with constraints. If I am doing as shown below it throws an error.
# Step 4: Constraints
model.src = ConstraintList()
for s in SRC:
model.src.add(sum([model.x[c,s] for c in CUS]) <= Supply[s])
model.dmd = ConstraintList()
for c in CUS:
model.dmd.add(sum([model.x[c,s] for s in SRC]) == Demand[c])
Error is like that:
Maybe anyone knows how to fix the problem with constraints. To make it more flexible. I understand why it is an error because in T there are not all possible combinations, but it is right, some of the routes is restricted and I do not want to use them in optimization.
You can first get the possible ones like this:
# Step 4: Constraints
model.src = ConstraintList()
for s in SRC:
cposs = [t[0] for t in T.keys() if t[1] == s]
model.src.add(sum([model.x[c,s] for c in cposs]) <= Supply[s])
model.dmd = ConstraintList()
for c in CUS:
sposs = [t[1] for t in T.keys() if t[0] == c]
model.dmd.add(sum([model.x[c,s] for s in sposs]) == Demand[c])
dataset = slim.dataset.Dataset(...)
provider = slim.dataset_data_provider.DatasetDataProvider(dataset, ..._
image, labels = provider.get(['image', 'label')
Let's say, for an example in a dataset A, labels could be [1, 2, 1, 3]. However, for some reason (e.g, due to dataset B), I would like to map the label IDs to other values. The mapping could be like below.
# {old_label: target_label}
mapping = {0: 0, 1: 2, 2: 2, 3: 2, 4: 2, 5: 3, 6: 1}
For now, I am guessing two ways:
-- tf.data.Dataset seems to have a map(map_func) function that every examples should pass, which could be the solution. However, I am more familiar to slim.dataset.Dataset. Is there a similar trick for slim.dataset.Dataset?
-- I was wondering if I can simply apply some mapping function to a tensor label such as:
new_labels = tf.map_fn(lambda x: x+1, labels, dtype=tf.int32)
# labels = [1 2 1 3] --> new_labels = [2 3 2 4]. This works.
new_labels = tf.map_fn(lambda x: mapping[x], labels, dtype=tf.int32)
# I wished but this does not work!
However, the below didn't work, which is what I need. Could anyone please advise?
I think you can try tf.contrib.lookup:
keys = list(mapping.keys())
values = [mapping[k] for k in keys]
table = tf.contrib.lookup.HashTable(
tf.contrib.lookup.KeyValueTensorInitializer(keys, values, key_dtype=tf.int64, value_dtype=tf.int64), -1
)
new_labels = table.lookup(labels)
sess=tf.Session()
sess.run(table.init)
print(sess.run(new_labels))
I am a beginner in machine learning and neural networks. Recently, after watching Andrew Ng's lectures on deep learning, I tried to implement a binary classifier using deep neural networks on my own.
However, the cost of the function is expected to decrease after each iteration.
In my program, it decreases slightly in the beginning, but rapidly increases later. I tried to make changes in learning rate and number of iterations, but to no avail. I am very confused.
Here is my code
1. Neural network classifier class
class NeuralNetwork:
def __init__(self, X, Y, dimensions, alpha=1.2, iter=3000):
self.X = X
self.Y = Y
self.dimensions = dimensions # Including input layer and output layer. Let example be dimensions=4
self.alpha = alpha # Learning rate
self.iter = iter # Number of iterations
self.length = len(self.dimensions)-1
self.params = {} # To store parameters W and b for each layer
self.cache = {} # To store cache Z and A for each layer
self.grads = {} # To store dA, dZ, dW, db
self.cost = 1 # Initial value does not matter
def initialize(self):
np.random.seed(3)
# If dimensions is 4, then layer 0 and 3 are input and output layers
# So we only need to initialize w1, w2 and w3
# There is no need of w0 for input layer
for l in range(1, len(self.dimensions)):
self.params['W'+str(l)] = np.random.randn(self.dimensions[l], self.dimensions[l-1])*0.01
self.params['b'+str(l)] = np.zeros((self.dimensions[l], 1))
def forward_propagation(self):
self.cache['A0'] = self.X
# For last layer, ie, the output layer 3, we need to activate using sigmoid
# For layer 1 and 2, we need to use relu
for l in range(1, len(self.dimensions)-1):
self.cache['Z'+str(l)] = np.dot(self.params['W'+str(l)], self.cache['A'+str(l-1)]) + self.params['b'+str(l)]
self.cache['A'+str(l)] = relu(self.cache['Z'+str(l)])
l = len(self.dimensions)-1
self.cache['Z'+str(l)] = np.dot(self.params['W'+str(l)], self.cache['A'+str(l-1)]) + self.params['b'+str(l)]
self.cache['A'+str(l)] = sigmoid(self.cache['Z'+str(l)])
def compute_cost(self):
m = self.Y.shape[1]
A = self.cache['A'+str(len(self.dimensions)-1)]
self.cost = -1/m*np.sum(np.multiply(self.Y, np.log(A)) + np.multiply(1-self.Y, np.log(1-A)))
self.cost = np.squeeze(self.cost)
def backward_propagation(self):
A = self.cache['A' + str(len(self.dimensions) - 1)]
m = self.X.shape[1]
self.grads['dA'+str(len(self.dimensions)-1)] = -(np.divide(self.Y, A) - np.divide(1-self.Y, 1-A))
# Sigmoid derivative for final layer
l = len(self.dimensions)-1
self.grads['dZ' + str(l)] = self.grads['dA' + str(l)] * sigmoid_prime(self.cache['Z' + str(l)])
self.grads['dW' + str(l)] = 1 / m * np.dot(self.grads['dZ' + str(l)], self.cache['A' + str(l - 1)].T)
self.grads['db' + str(l)] = 1 / m * np.sum(self.grads['dZ' + str(l)], axis=1, keepdims=True)
self.grads['dA' + str(l - 1)] = np.dot(self.params['W' + str(l)].T, self.grads['dZ' + str(l)])
# Relu derivative for previous layers
for l in range(len(self.dimensions)-2, 0, -1):
self.grads['dZ'+str(l)] = self.grads['dA'+str(l)] * relu_prime(self.cache['Z'+str(l)])
self.grads['dW'+str(l)] = 1/m*np.dot(self.grads['dZ'+str(l)], self.cache['A'+str(l-1)].T)
self.grads['db'+str(l)] = 1/m*np.sum(self.grads['dZ'+str(l)], axis=1, keepdims=True)
self.grads['dA'+str(l-1)] = np.dot(self.params['W'+str(l)].T, self.grads['dZ'+str(l)])
def update_parameters(self):
for l in range(1, len(self.dimensions)):
self.params['W'+str(l)] = self.params['W'+str(l)] - self.alpha*self.grads['dW'+str(l)]
self.params['b'+str(l)] = self.params['b'+str(l)] - self.alpha*self.grads['db'+str(l)]
def train(self):
np.random.seed(1)
self.initialize()
for i in range(self.iter):
#print(self.params)
self.forward_propagation()
self.compute_cost()
self.backward_propagation()
self.update_parameters()
if i % 100 == 0:
print('Cost after {} iterations is {}'.format(i, self.cost))
2. Testing code for odd or even number classifier
import numpy as np
from main import NeuralNetwork
X = np.array([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]])
Y = np.array([[1, 0, 1, 0, 1, 0, 1, 0, 1, 0]])
clf = NeuralNetwork(X, Y, [1, 1, 1], alpha=0.003, iter=7000)
clf.train()
3. Helper Code
import math
import numpy as np
def sigmoid_scalar(x):
return 1/(1+math.exp(-x))
def sigmoid_prime_scalar(x):
return sigmoid_scalar(x)*(1-sigmoid_scalar(x))
def relu_scalar(x):
if x > 0:
return x
else:
return 0
def relu_prime_scalar(x):
if x > 0:
return 1
else:
return 0
sigmoid = np.vectorize(sigmoid_scalar)
sigmoid_prime = np.vectorize(sigmoid_prime_scalar)
relu = np.vectorize(relu_scalar)
relu_prime = np.vectorize(relu_prime_scalar)
Output
I believe your cross-entropy derivative is wrong. Instead of this:
# WRONG!
self.grads['dA'+str(len(self.dimensions)-1)] = -(np.divide(self.Y, A) - np.divide(1-self.Y, A))
... do this:
# CORRECT
self.grads['dA'+str(len(self.dimensions)-1)] = np.divide(A - self.Y, (1 - A) * A)
See these lecture notes for the details. I think you meant the formula (5), but forgot 1-A. Anyway, use formula (6).
I get the following error on second to last line of code: Not sure how to proceed. Can anyone give me some insight.
ValueError: Tensor("Variable_20:0", shape=(8, 8, 4, 32), dtype=float32_ref) must be from the same graph as Tensor("Variable_20/RMSProp_1:0", shape=(8, 8, 4, 32), dtype=float32_ref).
The code is as follows:
optimizer = tf.train.RMSPropOptimizer(0.00025, 0.95, 0.95, 0.01)
readout = tf.reduce_mean(tf.reduce_sum(tf.mul(l_readout,a), reduction_indices=1))
cost = tf.reduce_mean(tf.square(tf.sub(y,readout)))
grads = optimizer.compute_gradients(cost, localW)
grad_vals = sess.run([g for (g,v) in grads], feed_dict = {a: val_a, y: val_y, s: val_s})
placeholder_gradients = []
for var in localW:
placeholder_gradients.append( (tf.placeholder('float',shape=var.get_shape()) , var) )
feed_dict = {}
for i in range(len(placeholder_gradients)):
feed_dict[placeholder_gradients[i]] = grad_vals[i]
apply_gradients = optimizer.apply_gradients(placeholder_gradients) #ERROR LINE
apply_gradients.run(feed_dict=feed_dict)
This maybe related to using a thread which is not shown in the example. I will withdraw this question until I look further into how to use threads with the same graph.