ValueError: Shape (None, 17) must have rank 1 - tensorflow

I am working on a hand character recognition model. I created a CNN+BiLSTM+CTC Loss model. But getting error when I run model.fit(). Please help me fix this error.
My Model
# input with shape of height=32 and width=128
inputs = Input(shape=(32,128,1))
# convolution layer with kernel size (3,3)
conv_1 = Conv2D(64, (3,3), activation = 'relu', padding='same')(inputs)
# poolig layer with kernel size (2,2)
pool_1 = MaxPooling2D(pool_size=(2, 2), strides=2)(conv_1)
conv_2 = Conv2D(128, (3,3), activation = 'relu', padding='same')(pool_1)
pool_2 = MaxPooling2D(pool_size=(2, 2), strides=2)(conv_2)
conv_3 = Conv2D(256, (3,3), activation = 'relu', padding='same')(pool_2)
conv_4 = Conv2D(256, (3,3), activation = 'relu', padding='same')(conv_3)
# poolig layer with kernel size (2,1)
pool_4 = MaxPooling2D(pool_size=(2, 1))(conv_4)
conv_5 = Conv2D(512, (3,3), activation = 'relu', padding='same')(pool_4)
# Batch normalization layer
batch_norm_5 = BatchNormalization()(conv_5)
conv_6 = Conv2D(512, (3,3), activation = 'relu', padding='same')(batch_norm_5)
batch_norm_6 = BatchNormalization()(conv_6)
pool_6 = MaxPooling2D(pool_size=(2, 1))(batch_norm_6)
conv_7 = Conv2D(512, (2,2), activation = 'relu')(pool_6)
squeezed = Lambda(lambda x: K.squeeze(x, 1))(conv_7)
# bidirectional LSTM layers with units=128
blstm_1 = Bidirectional(LSTM(128, return_sequences=True, dropout = 0.2))(squeezed)
blstm_2 = Bidirectional(LSTM(128, return_sequences=True, dropout = 0.2))(blstm_1)
outputs = Dense(len(char_dict)+1, activation = 'softmax')(blstm_2)
act_model = Model(inputs, outputs)
Define a CTC loss model that takes the outputs of previous model as inputs
labels = Input(name='the_labels', shape=[max_length], dtype='float32')
input_length = Input(name='input_length', shape=[1], dtype='int64')
label_length = Input(name='label_length', shape=[1], dtype='int64')
def ctc_lambda_func(args):
y_pred, labels, input_length, label_length = args
return K.ctc_batch_cost(labels, y_pred, input_length, label_length)
loss_out = Lambda(ctc_lambda_func, output_shape=(1,), name='ctc')([outputs, labels, input_length,
label_length])
model = Model(inputs=[inputs, labels, input_length, label_length], outputs=loss_out)
model.compile(loss={'ctc': lambda y_true, y_pred: y_pred}, optimizer = 'adam')
model.fit(x=[input_array,
output_array,
train_input_length,
train_label_length],
y=np.zeros(input_array.shape[0]),
batch_size=256,
epochs = 100,
validation_data = ([test_input_array, test_output_array, valid_input_length,
valid_label_length], [np.zeros(test_input_array.shape[0])]),
verbose = 1,
callbacks = callbacks_list)
The error I am getting is
ValueError: Shape (None, 17) must have rank 1

Related

All predictions returning same value after update to tensorflow-gpu

everything was going well with these cnn to classify MarkovTransitionField sequences, when I was using tensorflow, but then I changed to tensorflow-gpu and all predictions return same value, so model isn't learning (but is fast)
#model 1
def model_1_signal():
model = Sequential()
model.add(Conv2D(73, (5,5), strides = (2,2), activation = 'relu',
padding = 'same', input_shape = (145,5,5),
kernel_initializer = 'he_normal',
bias_initializer = 'zeros'))
model.add(Conv2D(73, (5,5), strides = (2,2), activation = 'relu',
padding = 'same', kernel_initializer = 'he_normal',
bias_initializer = 'zeros'))
model.add(Flatten())
model.add(Dense(2, activation = 'sigmoid',
kernel_initializer = 'glorot_uniform',
bias_initializer = 'zeros'))
model.compile(loss = 'categorical_crossentropy',
optimizer = 'adam',
metrics = ['accuracy'])
return model
def model_2_signal():
model = Sequential()
model.add(Conv2D(73, (5,5), activation = 'relu',
padding = 'same', input_shape = (145,5,5)))
model.add(Dropout(0.2))
model.add(Conv2D(73, (5,5), strides = (2,2), activation = 'relu',
padding = 'same'))
model.add(Dropout(0.2))
model.add(Conv2D(73, (5,5), strides = (2,2), activation = 'relu',
padding = 'same'))
model.add(Dropout(0.2))
model.add(Conv2D(73, (5,5), strides = (2,2), activation = 'relu',
padding = 'same'))
model.add(MaxPooling2D(pool_size = (1,1),strides = 3))
model.add(Dropout(0.2))
model.add(Flatten())
model.add(Dense(64, activation = 'relu'))
model.add(Dropout(0.2))
model.add(Dense(64, activation = 'relu'))
model.add(Dropout(0.2))
model.add(Dense(2, activation = 'sigmoid'))
model.compile(loss = 'categorical_crossentropy',
optimizer = 'adam',
metrics = ['accuracy'])
return model
EPOCHS = 300
BATCH_SIZE = 15
train_X, val_X, train_y, val_y, train_date, val_date = train_test_split(bullish_episodes_img,y,date,test_size = 0.13, shuffle = False)
val_X, test_X, val_y, test_y, val_date, test_date = train_test_split(val_X, val_y, val_date, test_size = 0.38, shuffle = False)
model_1 = model_1_signal()
model_1.fit(train_X,train_y, validation_data=(val_X,val_y),
epochs = EPOCHS, batch_size = BATCH_SIZE, verbose = 2,
shuffle = True)
yhat_model1 = model_1.predict(test_X)
yhat_model1 = np.where(yhat_model1 >= 0.5, 1, 0)
df1 = pd.DataFrame({'signal':yhat_model1[:,1],'test':test_y[:,1],'time':test_date})
df1 = df1.sort_values(by='time')
#model_1.save('/home/f320x/Documents/AT/Py (1)/final_project/new_standard/spyder/spyder/EURCAD/signal_model/signal_model1')
model_2 = model_2_signal()
model_2.fit(train_X,train_y, validation_data=(val_X,val_y),
epochs = EPOCHS, batch_size = BATCH_SIZE, verbose = 2,
shuffle = True)
yhat_model2 = model_2.predict(test_X)
yhat_model2 = np.where(yhat_model2 >= 0.5, 1, 0)
df2 = pd.DataFrame({'signal':yhat_model2[:,1],'test':test_y[:,1],'time':test_date})
df2 = df2.sort_values(by='time')
before transform data to MarkovTransitionField, i scaled all values between 0 and 1 and there's no nan in dataset.
does somebody has a hint?

Different seeds lead to extremely different results with modified U-Net

I am using a modified U-Net architecture to perform auto-segmentation on a dataset of biomedical images. Although I have achieved some decent results, I have noticed that the training of the model is highly dependent on the seed that I set at the beginning. Using the same seeds and performing multiple runs of my code with those seeds results in very repeatable results. However, with the exact same code, hyperparameters, and training/test set images, the results vary wildly with different seeds. My loss function is the dice coefficient loss (the primary outcome metric that I am concerned with is the dice coefficient) and with some seeds my loss will level off at about 0.95 and only go down around 0.01 over the course of many many epochs and with other seeds my loss won't start to level off until about 0.10. The only difference is the seed. Since the total range for dice coefficient loss is only 0-1 these values represent extremely different results.
As additional information, this phenomenon has occurred for different training set sizes ranging from a few hundred images to a few thousand images. I have double checked and do not believe there to be an issues with my data. Additionally, my dataset is highly unbalanced (only about 3% of my pixels are the region I am trying to segment).
Things I have already tried:
Using alternative loss functions such as binary cross entropy, focal loss, tversky loss, and combined binary cross entropy and dice loss
Adjusting hyperparameters: learning rate (I am using adam optimizer), batch size, filter sizes, model depth
Trying different kernel initializers
Different activations functions (relu vs leaky relu)
Gradient clipping
Batch normalization
Dropout
Any suggestions of how I can solve this issue would be greatly appreciated. This issue has stalled my progress significantly and as I add to my training set the issue seems to exacerbated further by causing me to have to test quite a few seed options before finding one that allows my model to train correctly.
Below is my code starting after I import my images and modules, crop the images and masks, and put them into arrays:
Please note that in my full code setting the seeds and hyperparameters goes at the top.
from numpy.random import seed
seed(3)
from tensorflow import set_random_seed
set_random_seed(4)
# Define Parameters
batch_size = 16
batch_size_test = 1
filter_size = 8
kernel_dimension = 5
learning_rate = 1e-4
num_epochs = 25
# these are functions for pairing the image to its respective mask
def get_dataset(images, mask, batch_size):
dataset_input = tf.data.Dataset.from_tensor_slices(tf.constant(images, dtype=tf.float32)) #converts to tf type
dataset_mask = tf.data.Dataset.from_tensor_slices(tf.constant(mask, dtype=tf.float32)) #converts to tf type
dataset_input = dataset_input.map(lambda x: tf.image.per_image_standardization(x)) #standardizes the image
dataset_input = dataset_input.map(lambda x: tf.image.adjust_contrast(x,1.2)) #adds some contrast
dataset = tf.data.Dataset.zip((dataset_input, dataset_mask)) #pairs the images to the masks into one tf array
dataset = dataset.shuffle(len(images)).repeat() #randomly shuffles dataset and repeats the dataset
dataset = dataset.batch(batch_size).prefetch(batch_size) # set the batch size
print('image shape: ', dataset.output_shapes[0])
print('label shape: ', dataset.output_shapes[1])
print('types: ', dataset.output_types)
print()
print(dataset)
return dataset
def get_dataset_noshuffle(images, mask, batch_size):
dataset_input = tf.data.Dataset.from_tensor_slices(tf.constant(images, dtype=tf.float32))
dataset_mask = tf.data.Dataset.from_tensor_slices(tf.constant(mask, dtype=tf.float32))
dataset_input = dataset_input.map(lambda x: tf.image.per_image_standardization(x))
dataset_input = dataset_input.map(lambda x: tf.image.adjust_contrast(x,1.2))
dataset = tf.data.Dataset.zip((dataset_input, dataset_mask))
dataset = dataset.batch(batch_size).prefetch(batch_size)
print('image shape: ', dataset.output_shapes[0])
print('label shape: ', dataset.output_shapes[1])
print('types: ', dataset.output_types)
print()
print(dataset)
return dataset
X_train, X_test, y_train, y_test = train_test_split(images, mask, test_size=0.0001, random_state=42)
X_test = testimages # if you want to use a separate set of images that you imported earlier then use this
y_test = testmask # and this
# use the get_dataset function to pair the X_train with y_train and X_test with y_test. adjust batch size as needed
train_dataset = get_dataset(X_train, y_train, batch_size)
test_dataset = get_dataset(X_test, y_test, batch_size_test)
test_dataset_noshuffle = get_dataset_noshuffle(X_test, y_test, batch_size_test)
def dice_coef(y_true, y_pred):
smooth = 1.
y_true_f = tf.keras.backend.flatten(y_true)
y_pred_f = tf.keras.backend.flatten(y_pred)
intersection = tf.keras.backend.sum(y_true_f * y_pred_f)
return (2. * intersection + smooth) / (tf.keras.backend.sum(y_true_f) + tf.keras.backend.sum(y_pred_f) + smooth)
def dice_coef_loss(y_true, y_pred):
return 1. - dice_coef(y_true, y_pred)
def unet(pretrained_weights = None,input_size = (size,size,1), df=filter_size, kernel_size = kernel_dimension):
inputs = Input(input_size)
conv1 = Conv2D(df, kernel_size, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(inputs)
conv1 = BatchNormalization()(conv1)
conv1 = Conv2D(df, kernel_size, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv1)
conv1 = BatchNormalization()(conv1)
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = Conv2D(df*2, kernel_size, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool1)
conv2 = BatchNormalization()(conv2)
conv2 = Conv2D(df*2, kernel_size, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv2)
conv2 = BatchNormalization()(conv2)
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = Conv2D(df*2*2, kernel_size, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool2)
conv3 = BatchNormalization()(conv3)
conv3 = Conv2D(df*2*2, kernel_size, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv3)
conv3 = BatchNormalization()(conv3)
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
conv4 = Conv2D(df*2*2*2, kernel_size, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool3)
conv4 = BatchNormalization()(conv4)
conv4 = Conv2D(df*2*2*2, kernel_size, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv4)
conv4 = BatchNormalization()(conv4)
pool4 = MaxPooling2D(pool_size=(2, 2))(conv4)
conv5 = Conv2D(df*2*2*2*2, kernel_size, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool4)
conv5 = BatchNormalization()(conv5)
conv5 = Conv2D(df*2*2*2*2, kernel_size, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv5)
conv5 = BatchNormalization()(conv5)
up6 = Conv2D(df*2*2*2, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv5))
merge6 = concatenate([conv4,up6], axis = 3)
conv6 = Conv2D(df*2*2*2, kernel_size, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge6)
conv6 = BatchNormalization()(conv6)
conv6 = Conv2D(df*2*2*2, kernel_size, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv6)
conv6 = BatchNormalization()(conv6)
up7 = Conv2D(df*2*2, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv6))
merge7 = concatenate([conv3,up7], axis = 3)
conv7 = Conv2D(df*2*2, kernel_size, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge7)
conv7 = BatchNormalization()(conv7)
conv7 = Conv2D(df*2*2, kernel_size, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv7)
conv7 = BatchNormalization()(conv7)
up8 = Conv2D(df*2, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv7))
merge8 = concatenate([conv2,up8], axis = 3)
conv8 = Conv2D(df*2, kernel_size, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge8)
conv8 = BatchNormalization()(conv8)
conv8 = Conv2D(df*2, kernel_size, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv8)
conv8 = BatchNormalization()(conv8)
up9 = Conv2D(df, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv8))
merge9 = concatenate([conv1,up9], axis = 3)
conv9 = Conv2D(df, kernel_size, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge9)
conv9 = BatchNormalization()(conv9)
conv9 = Conv2D(df, kernel_size, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv9)
conv9 = BatchNormalization()(conv9)
conv9 = Conv2D(2, kernel_size, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv9)
conv10 = Conv2D(1, (1,1), activation = 'sigmoid')(conv9)
model = Model(inputs, conv10)
model.compile(optimizer = Adam(lr = learning_rate), loss = dice_coef_loss, metrics = ['accuracy','binary_accuracy', 'mae',
tf.keras.metrics.Precision(name='precision'), dice_coef, jacard_coef,
tf.keras.metrics.FalseNegatives(thresholds=0.5, name='FN', dtype=None),
tf.keras.metrics.FalsePositives(thresholds=0.5, name='FP', dtype=None),
tf.keras.metrics.TrueNegatives(thresholds=0.5, name='TN', dtype=None),
tf.keras.metrics.TruePositives(thresholds=0.5, name='TP', dtype=None)])
model.summary() #if you want to printout all the parameters and model summary
if(pretrained_weights):
model.load_weights(pretrained_weights)
return model
model = unet(pretrained_weights=None, df=filter_size, input_size=(size, size, 1), kernel_size=kernel_dimension)
steps_epoch = np.int16(np.ceil(len(X_train)/batch_size)) # determines your steps per epoch
steps_val = np.int16(np.ceil(len(X_test)/batch_size_test)) # determines your steps for the test set
model_checkpoint = ModelCheckpoint(weights_name, monitor='val_loss',verbose=1, save_best_only=True)
#This is the actual training part of the code
history = model.fit(train_dataset, validation_data=test_dataset, steps_per_epoch=steps_epoch,
validation_steps=steps_val, batch_size=batch_size, epochs=num_epochs, verbose=1, callbacks=[model_checkpoint])
This problem is sometimes noticed when you do not have enough training data. Get more training data. If you cannot get additional data, you can increase the data through augmentation techniques. Generally with enough data points the model converges to a minima - if not stuck in local or saddle. Another approach is to use a pre-trained model and fine tune on it. As I see you are initializing the model from scratch -
model = unet(pretrained_weights=None, df=filter_size, input_size=(size, size, 1), kernel_size=kernel_dimension)

How to make the CNN prediction function output as binary number(0 or 1)?

I used the CNN model with Keras to make an image binary classification, during the final prediction part, I defined such function below to output the prediction result:
model = keras.Sequential()
model.add(Conv2D(filters = 64, kernel_size = (3, 3), activation = 'relu', input_shape = ((256,256,3))))
model.add(MaxPooling2D(pool_size = (2, 2), strides=(2, 2)))
model.add(Conv2D(filters = 128, kernel_size = (3, 3), activation = 'relu'))
model.add(MaxPooling2D(pool_size = (2, 2), strides=(2, 2)))
model.add(Conv2D(filters = 256, kernel_size = (3, 3), activation = 'relu'))
model.add(MaxPooling2D(pool_size = (2, 2), strides=(2, 2)))
model.add(Flatten())
model.add(Dense(units = 512, activation = 'relu'))
model.add(Dense(units = 1,activation='sigmoid'))
model.compile(optimizer='adam',
loss=tf.keras.losses.BinaryCrossentropy(),
metrics=['accuracy'])
history = model.fit(
train_ds,
validation_data=valid_ds,
epochs=10)
def testing_image(image_directory):
test_image = image.load_img(image_directory, target_size = (256, 256))
test_image = image.img_to_array(test_image)
test_image = np.expand_dims(test_image, axis = 0)
result = model.predict(test_image)
print(result)
testing_image('/content/drive/MyDrive/testing/01.jpg')
The output is:
[[0.4733843]]
The output is always a decimal number, but I want the output the result as only
0or 1 and without the array representation.
Any help is appreciated.
Sigmoid activation function returns the values between 0 to 1 where the values <0.5 implies to category zero(0) and >0.5 implies to category one(1) in binary classification.
To get these binary numbers, you need to add one more line of code in testing_image() as below:
Fixed code:
def testing_image(image_directory):
test_image = image.load_img(image_directory, target_size = (256, 256))
test_image = image.img_to_array(test_image)
test_image = np.expand_dims(test_image, axis = 0)
#Changes in code
pred = model.predict(test_image)
result = np.where(pred > 0.5, 1, 0) #<--to get the binary category
print(result)
testing_image('/content/drive/MyDrive/testing/01.jpg')

How to add dropout in CNN and LSTM architecture to handle overfitting problem, TensorFlow

My network architecture is the combination of 7 layers of CNN and 2 layers of BiLSTM, when i trained my model it shows overfitting, one of the solution to deal with this problem is Dropout in the architecture. How we can add dropout in this network architecture.
# input with shape of height=42 and width=600
inputs = Input(shape=(42,600,1))
# convolution layer with kernel size (3,3)
conv_1 = Conv2D(64, (3,3), activation = 'relu', padding='same')(inputs)
# poolig layer with kernel size (2,2)
pool_1 = MaxPool2D(pool_size=(2, 2), strides=2)(conv_1)
conv_2 = Conv2D(128, (3,3), activation = 'relu', padding='same')(pool_1)
pool_2 = MaxPool2D(pool_size=(2, 2), strides=2)(conv_2)
conv_3 = Conv2D(256, (3,3), activation = 'relu', padding='same')(pool_2)
conv_4 = Conv2D(256, (3,3), activation = 'relu', padding='same')(conv_3)
# poolig layer with kernel size (2,1)
pool_4 = MaxPool2D(pool_size=(2, 1))(conv_4)
conv_5 = Conv2D(512, (3,3), activation = 'relu', padding='same')(pool_4)
# Batch normalization layer
batch_norm_5 = BatchNormalization()(conv_5)
conv_6 = Conv2D(512, (3,3), activation = 'relu', padding='same')(batch_norm_5)
batch_norm_6 = BatchNormalization()(conv_6)
pool_6 = MaxPool2D(pool_size=(2, 1))(batch_norm_6)
conv_7 = Conv2D(512, (2,2), activation = 'relu')(pool_6)
squeezed = Lambda(lambda x: K.squeeze(x, 1))(conv_7)
# bidirectional LSTM layers with units=128
blstm_1 = Bidirectional(LSTM(128, return_sequences=True, dropout = 0.5))(squeezed)
blstm_2 = Bidirectional(LSTM(128, return_sequences=True, dropout = 0.5))(blstm_1)
outputs = Dense(len(char_list)+1, activation = 'softmax')(blstm_2)
# model to be used at test time
act_model = Model(inputs, outputs)
The accuracy and loss graph of trained model is:

TensorFlow Keras(v2.2) model fit with multiple outputs and losses failed

I want to use TensorFlow Keras(v2.2) model fit in mnist with multiple outputs and losses, but it failed.
My costume model will return a list [logits, embedding]. logits is 2D tensor [batch , 10] and embedding is also 2D tensor [batch, 64].
class MyModel(tf.keras.Model):
def __init__(self):
super(MyModel, self).__init__()
self.reshape = tf.keras.layers.Reshape((28, 28, 1))
self.conv2D1 = tf.keras.layers.Conv2D(filters=8, kernel_size=(3,3), strides=(1, 1), padding='same', activation='relu')
self.maxPool1 = tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding="same")
self.conv2D2 = tf.keras.layers.Conv2D(filters=8, kernel_size=(3,3), strides=(1, 1), padding='same', activation='relu')
self.maxPool2 = tf.keras.layers.MaxPooling2D(pool_size=2)
self.flatten = tf.keras.layers.Flatten(data_format="channels_last")
self.dropout = tf.keras.layers.Dropout(tf.compat.v1.placeholder_with_default(0.25, shape=[], name="dropout"))
self.dense1 = tf.keras.layers.Dense(64, activation=None)
self.dense2 = tf.keras.layers.Dense(10, activation=None)
def call(self, inputs, training):
x = self.reshape(inputs)
x = self.conv2D1(x)
x = self.maxPool1(x)
if training:
x = self.dropout(x)
x = self.conv2D2(x)
x = self.maxPool2(x)
if training:
x = self.dropout(x)
x = self.flatten(x)
x = self.dense1(x)
embedding = tf.math.l2_normalize(x, axis=1)
logits = self.dense2(embedding)
return [logits, embedding]
loss_0 is normal cross_entropy
def loss_0(y_true, y_pred):
loss_0 = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y_true, logits=y_pred[0]))
loss_1 is triplet_semihard_loss
def loss_1(y_true, y_pred):
loss_1 = tfa.losses.triplet_semihard_loss(y_true=y_true, y_pred=y_pred[1], distance_metric="L2")
return loss_1
When I use model fit, I can only get logits tensor in each loss. I can't get embedding tensor. y_pred[0] and y_pred[1] is not work. Any suggestion?
model = MyModel()
model.compile(optimizer=tf.keras.optimizers.Adam(lr=1e-3), loss=[loss_0, loss_1], loss_weights=[0.1, 0.1])
history = model.fit(train_dataset, epochs=5)