Kotlin android if statement - kotlin

Kotlin, Android studio, v. 4.0.1
I have a progress bar in my app that ranges from 0 to 10.
When it is at 0, the following code gives an error (which is logic):
val rand = Random().nextInt(seekBar.progress) + 1
resultsTextView.text = rand.toString()
So I want to add an if statement before to filter out the 0. If the progress bar is at 0, the 'rand' should be at 0 too.
I have the following but it does not work:
rollButton.setOnClickListener {
val ggg = seekBar.progress
if (ggg = 0) {
val rand = 0
} else {
val rand = Random().nextInt(seekBar.progress) + 1
}
resultsTextView.text = rand.toString()
}
Any idea?

rand is defined in the scope of if and else, you cannot use it outside that scope and instead of comparing ggg with 0 (==) you are setting its value to 0 (=). And if you want to reassign rand, it cannot be a val which can only be assigned once, make it a var instead.
Do it like this:
rollButton.setOnClickListener {
val ggg = seekBar.progress
var rand = 0;
if (ggg != 0) {
rand = Random().nextInt(seekBar.progress) + 1
}
resultsTextView.text = rand.toString()
}

Replace if (ggg = 0) { with if (ggg == 0) {.

A more Kotlin approach might be along the lines of:
rollButton.setOnClickListener {
val rand = seekBar.progress.let {
if (it == 0)
0
else
Random().nextInt(it) + 1
}
resultsTextView.text = rand.toString()
}
This uses an if() expression (not a statement) to avoid any mutable variables.  And by getting the value of seekBar.progress only once, it also avoids any issues if the bar gets moved while that's running.
However, I have to check if that's actually what you want:
Bar position | Possible values
0 | 0
1 | 1
2 | 1–2
3 | 1–3
… | …
That looks wrong to me…  Do you really want to exclude zero in all but the first case?  If not, then you could just move the addition inside the call — Random().nextInt(seekBar.progress + 1) — and avoid the special case entirely.

Related

print n times number from 1. Need print (1 2 2 3 3 3 4)

I can't figure out how to solve the following problem: there is a number n. Output the numbers to the console in order separated by a space, but so that the next digit in the iteration is output as many times as it is a digit, and at the same time so that there are no more than n digits in the output. Сan anyone suggest the correct algorithm?
example: have n = 7, need print (1 2 2 3 3 3 4) in kotlin
what i try:
var n = 7
var count = 1
var i = 1
for (count in 1..n) {
for (i in 1..count) {
print(count)
}
}
}
var n = 11
var count = 1
var i = 1
var size = 0
// loop# for naming a loop in kotlin and inside another loop we can break or continue from outer loop
loop# for (count in 1..n) {
for (i in 1..count) {
print(count)
size++
if (size == n){
break#loop
}
}
}
You can use "#" for naming loops and if you want to break from that loop, you can use this syntax in kotlin. It worked for me.
For kotlin labeled break you can look at this reference: link
var count = 1
var n = 7
for(count in 1..n) {
print(count.toString().repeat(count))
}
count.toString() converts an integer to a string, .repeat() function repeats count times the string.
In case you need to add a space between each number, you can add the following:
print(" ")
Using generateSequence and Collections functions:
val n = 7
println(generateSequence(1) {it + 1}
.flatMap{e -> List(e){e}}
.take(n)
.joinToString(" "))
Your example is correct, You have to put a space between the printing
you can follow the code from this link
Kotlin lang code snippet
or the following code snippet
fun main() {
var n = 7
var count = 1
var i = 1
for (count in 1..n) {
for (i in 1..count) {
print(count)
print(' ')
}
}
}
For completeness, here's another approach where you write your own sequence function which produces individual values on demand (instead of creating intermediate lists)
sequence {
var digit = 1
while (true) {
for (i in 1..digit) yield(digit)
digit++
}
}.take(7)
.joinToString(" ")
.run(::print)
Not a big deal in this situation, but good to know!

Extract value out of Kotlin arrow Either type and assign it to const

It would be a basic question, but I couldn't figure out a solution. I need to initialize a constant out of the right-side value of below either type.
val test: Either<String, Int> = 1.right()
I tried something like below but it shrinks the scope of the constant.
when(test) {
is Either.Right -> {val get:Int = test.b}
is Either.Left -> println(test.a)
}
I want that get to be scoped outside of when statement. Is there any way to do it or Arrow Either is not made for this purpose?
The important question is: what should happen if the Either is Left. In this example it is created close to where it's used, so it is obvious to you as a developer. But to the compiler what is inside the Either can be either an Int or a String.
You can extract the value using for example fold:
val x = test.fold({ 0 }, {it}) // provide 0 as default in case the Either was a `Left`
// x = 1
another option is getOrElse
val test = 1.right()
val x = test.getOrElse { 42 } // again, default in case it was a `Left`
// x = 42
You can also work with it without unwrapping it:
val test = 1.right()
val testPlus10 = test.map { it + 10 } // adds 10 to `test` if it is `Right`, does nothing otherwise
val x = testPlus10.getOrElse { 0 } // unwrap by providing a default value
// x = 11
For more example check the official docs.
Recommended reading: How do I get the value out of my Monad

Why does `variable++` increment the variable but `variable + 1` does not?

Here's the problem in which I encountered this issue:
The function should compare the value at each index position and score a point if the value for that position is higher. No point if they are the same. Given a = [1, 1, 1] b = [1, 0, 0] output should be [2, 0]
fun compareArrays(a: Array<Int>, b: Array<Int>): Array<Int> {
var aRetVal:Int = 0
var bRetVal:Int = 0
for(i in 0..2){
when {
a[i] > b[i] -> aRetVal + 1 // This does not add 1 to the variable
b[i] > a[i] -> bRetVal++ // This does...
}
}
return arrayOf(aRetVal, bRetVal)
}
The IDE even says that aRetVal is unmodified and should be declared as a val
What others said is true, but in Kotlin there's more. ++ is just syntactic sugar and under the hood it will call inc() on that variable. The same applies to --, which causes dec() to be invoked (see documentation). In other words a++ is equivalent to a.inc() (for Int or other primitive types that gets optimised by the compiler and increment happens without any method call) followed by a reassignment of a to the incremented value.
As a bonus, consider the following code:
fun main() {
var i = 0
val x = when {
i < 5 -> i++
else -> -1
}
println(x) // prints 0
println(i) // prints 1
val y = when {
i < 5 -> ++i
else -> -1
}
println(y) // prints 2
println(i) // prints 2
}
The explanation for that comes from the documentation I linked above:
The compiler performs the following steps for resolution of an operator in the postfix form, e.g. a++:
Store the initial value of a to a temporary storage a0;
Assign the result of a.inc() to a;
Return a0 as a result of the expression.
...
For the prefix forms ++a and --a resolution works the same way, and the effect is:
Assign the result of a.inc() to a;
Return the new value of a as a result of the expression.
Because
variable++ is shortcut for variable = variable + 1 (i.e. with assignment)
and
variable + 1 is "shortcut" for variable + 1 (i.e. without assignment, and actually not a shortcut at all).
That is because what notation a++ does is actually a=a+1, not just a+1. As you can see, a+1 will return a value that is bigger by one than a, but not overwrite a itself.
Hope this helps. Cheers!
The equivalent to a++ is a = a + 1, you have to do a reassignment which the inc operator does as well.
This is not related to Kotlin but a thing you'll find in pretty much any other language

Conditionally return empty iterator from flat_map

Given this definition for foo:
let foo = vec![vec![1, 2, 3], vec![4, 5, 6], vec![7, 8, 9]];
I'd like to be able to write code like this:
let result: Vec<_> = foo.iter()
.enumerate()
.flat_map(|(i, row)| if i % 2 == 0 {
row.iter().map(|x| x * 2)
} else {
std::iter::empty()
})
.collect();
but that raises an error about the if and else clauses having incompatible types. I tried removing the map temporarily and I tried defining an empty vector outside the closure and returning an iterator over that like so:
let empty = vec![];
let result: Vec<_> = foo.iter()
.enumerate()
.flat_map(|(i, row)| if i % 2 == 0 {
row.iter() //.map(|x| x * 2)
} else {
empty.iter()
})
.collect();
This seems kind of silly but it compiles. If I try to uncomment the map then it still complains about the if and else clauses having incompatible types. Here's part of the error message:
error[E0308]: if and else have incompatible types
--> src/main.rs:6:30
|
6 | .flat_map(|(i, row)| if i % 2 == 0 {
| ______________________________^
7 | | row.iter().map(|x| x * 2)
8 | | } else {
9 | | std::iter::empty()
10 | | })
| |_________^ expected struct `std::iter::Map`, found struct `std::iter::Empty`
|
= note: expected type `std::iter::Map<std::slice::Iter<'_, {integer}>, [closure#src/main.rs:7:28: 7:37]>`
found type `std::iter::Empty<_>`
Playground Link
I know I could write something that does what I want with some nested for loops but I'd like to know if there's a terse way to write it using iterators.
Since Rust is statically typed and each step in an iterator chain changes the result to a new type that entrains the previous types (unless you use boxed trait objects) you will have to write it in a way where both branches are covered by the same types.
One way to convey conditional emptiness with a single type is the TakeWhile iterator implementation.
.flat_map(|(i, row)| {
let iter = row.iter().map(|x| x * 2);
let take = i % 2 == 0;
iter.take_while(|_| take)
})
If you don't mind ignoring the edge-case where the input iterator foo could have more than usize elements you could also use Take instead with either 0 or usize::MAX. It has the advantage of providing a better size_hint() than TakeWhile.
In your specific example, you can use filter to remove unwanted elements prior to calling flat_map:
let result: Vec<_> = foo.iter()
.enumerate()
.filter(|&(i, _)| i % 2 == 0)
.flat_map(|(_, row)| row.iter().map(|x| x * 2))
.collect();
If you ever want to use it with map instead of flat_map, you can combine the calls to filter and map by using filter_map which takes a function returning an Option and only keeps elements that are Some(thing).

Error in Print prime number using high order functions in kotlin

val listNumbers = generateSequence(1) { it + 1 }
val listNumber1to100 = listNumbers.takeWhile { it < 100 }
val secNum:Unit = listNumber1to100.forEach {it}
println(listNumber1to100.asSequence().filter { it%(listNumber1to100.forEach { it })!=0 }.toList())
I have an error in reminder sign!
This is Error: None of the following functions can be called with the arguments supplied
In your first approach, the error appears in this line:
it%(listNumber1to100.forEach { it })
A Byte, Double, Float, Int, Long or Short is prefered right after the % operator, however, forEach is a function which the return type is Unit.
In your second approach, you have the correct expression in isPrime(Int). Here are some suggestions for you:
listNumber1to100 is excluding 100 in your code, if you want to include 100 in listNumber1to100, the lambda you pass to takeWhile should be changed like this:
val listNumber1to100 = listNumbers.takeWhile { it <= 100 }
listNumber1to100.asSequence() is redundant here since listNumber1too100 is itself a TakeWhileSequence which implements Sequence.
isPrime(Int) is a bit confusing since it is check for isComposite and it does not work for every input it takes(it works for 1 to 99 only). I will rewrite it in this way:
fun isPrime(num: Int): Boolean = if (num <= 1) false else !(2..num/2).any { num % it == 0 }
Since prime number must be positive and 1 is a special case(neither a prime nor composite number), it just return false if the input is smaller or equal to 1. If not, it checks if the input is divisible by a range of number from 2 to (input/2). The range ends before (input/2) is because if it is true for num % (num/2) == 0, it is also true for num % 2 == 0, vise versa. Finally, I add a ! operator before that because a prime number should not be divisible by any of those numbers.
Finally, you can filter a list by isPrime(Int) like this:
println(listNumber1to100.filter(::isPrime).toList())
PS. It is just for reference and there must be a better implementation than this.
To answer your question about it, it represents the only lambda parameter inside a lambda expression. It is always used for function literal which has only one parameter.
The error is because the expression: listNumber1to100.forEach { it } - is not a number, it is a Unit (ref).
The compiler try to match the modulo operator to the given function signatures, e.g.: mod(Byte) / mod(Int) / mod(Long) - etc.
val listNumbers = generateSequence(1) { it + 1 }
val listNumber1to100 = listNumbers.takeWhile { it < 100 }
fun isPrime(num: Int): Boolean = listNumber1to100.asSequence().any { num%it==0 && it!=num && it!=1 }
println(listNumber1to100.asSequence().filter { !isPrime(it)}.toList())
I found this solution and worked
But why can I have a non-number here in the right side of reminder