I would like to implement the following custom loss function, with argument x as the output of the last layer. Until now I implemented function this as Lambda layer, coupled with the keras mae loss, but I do not want that anymore
def GMM_UNC2(self, x):
tmp = self.create_mr(x) # get mr series
mr = k.sum(tmp, axis=1) # sum over time
tmp = k.square((1/self.T_i) * mr)
tmp = k.dot(tmp, k.transpose(self.T_i))
tmp = (1/(self.T * self.N)) * tmp
f = self.create_factor(x) # get factor
std = k.std(f)
mu = k.mean(f)
tmp = tmp + std/mu
def loss(y_true, y_pred=tmp):
return k.abs(y_true-y_pred)
return loss
self.y_true = np.zeros((1,1))
self.sdf_net = Model(inputs=[self.in_ma, self.in_mi, self.in_re, self.in_si], outputs=w)
self.sdf_net.compile(optimizer=self.optimizer, loss=self.GMM_UNC2(w))
self.sdf_net.fit([self.macro, self.micro, self.R, self.R_sign], self.y_true, epochs=epochs, verbose=1)
The code actually runs but it doesn't actually use tmp as input to loss (I multiplied it with some number, but the loss stays the same)
What am I doing wrong?
It is not completely clear from your question if you want to apply GMM_UNC2 function to the predictions, or it is applied only once to build the loss. If it is the first option, then all that code should be inside the loss and apply it over y_pred, like
def GMM_UNC2(self):
def loss(y_true, y_pred):
tmp = self.create_mr(y_pred) # get mr series
mr = k.sum(tmp, axis=1) # sum over time
tmp = k.square((1/self.T_i) * mr)
tmp = k.dot(tmp, k.transpose(self.T_i))
tmp = (1/(self.T * self.N)) * tmp
f = self.create_factor(x) # get factor
std = k.std(f)
mu = k.mean(f)
tmp = tmp + std/mu
return k.abs(y_true-y_pred)
return loss
If it is the second option, in general, passing objects as default values in a Python function definition is not a good idea, because it can be changed in the function definition. Also, you are assuming that the second argument to the loss has a name y_pred, but when called, it is done without a name, as a positional argument. In summary, you could try using a explicit comparison inside the loss, like
def loss(y_true, y_pred):
if y_pred is None:
y_pred = tmp
return k.abs(y_true - y_pred)
If what you like is ignoring the predictions, and forcibly using tmp, then you can ignore the y_pred argument of the loss and only use tmp, like
def loss(y_true, _):
return k.abs(y_true - tmp)
Related
I recently started learning pytorch and I am trying to convert a part of a large script including coding a MLP with variable number of hidden layers from Tensorflow to pytorch.
import tensorflow as tf
### Base neural network
def init_mlp(layer_sizes, std=.01, bias_init=0.):
params = {'w':[], 'b':[]}
for n_in, n_out in zip(layer_sizes[:-1], layer_sizes[1:]):
params['w'].append(tf.Variable(tf.random_normal([n_in, n_out], stddev=std)))
params['b'].append(tf.Variable(tf.mul(bias_init, tf.ones([n_out,]))))
return params
def mlp(X, params):
h = [X]
for w,b in zip(params['w'][:-1], params['b'][:-1]):
h.append( tf.nn.relu( tf.matmul(h[-1], w) + b ) )
#h.append( tf.nn.tanh( tf.matmul(h[-1], w) + b ) )
return tf.matmul(h[-1], params['w'][-1]) + params['b'][-1]
def compute_nll(x, x_recon_linear):
return tf.reduce_sum(tf.nn.sigmoid_cross_entropy_with_logits(x_recon_linear, x), reduction_indices=1, keep_dims=True)
def gauss_cross_entropy(mean_post, std_post, mean_prior, std_prior):
d = (mean_post - mean_prior)
d = tf.mul(d,d)
return tf.reduce_sum(-tf.div(d + tf.mul(std_post,std_post),(2.*std_prior*std_prior)) - tf.log(std_prior*2.506628), reduction_indices=1, keep_dims=True)
how could I write down similarly weights and bias variables and attach them in each hidden layer in pytorch?
how could I convert gauss_cross_entropy and compute_nll
functions as well (finding equivalent syntax)?
Are these two codes compatible?
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as func
from torch.distributions import Normal, Categorical, Independent
from copy import
device = "cpu"
if torch.cuda.is_available():
device = "cuda:0"
if torch.cuda.device_count() > 1:
net = nn.DataParallel(net)
net.to(device)
def init_mlp(layer_sizes, std=.01, bias_init=0.):
params = {'w':[], 'b':[]}
for n_in, n_out in zip(layer_sizes[:-1], layer_sizes[1:]):
params['w'].append(torch.tensor(Normal([n_in, n_out], torch.tensor([std])) ,requires_grad=True))
params['b'].append(torch.tensor(torch.mul(bias_init, torch.ones([n_out,])),requires_grad=True))
return params
def mlp(X, params):
h = [X]
for w,b in zip(params['w'][:-1], params['b'][:-1]):
h.append( torch.nn.ReLU( tf.matmul(h[-1], w) + b ) )
return torch.matmul(h[-1], params['w'][-1]) + params['b'][-1]
def compute_nll(x, x_recon_linear):
return torch.sum(func.binary_cross_entropy_with_logits(x_recon_linear, x), reduction_indices=1, keep_dims=True)
def gauss_cross_entropy(mu_post, sigma_post, mu_prior, sigma_prior):
d = (mu_post - mu_prior)
d = torch.mul(d,d)
return torch.sum(-torch.div(d + torch.mul(sigma_post,sigma_post),(2.*sigma_prior*sigma_prior)) - torch.log(sigma_prior*2.506628), reduction_indices=1, keep_dims=True)
What is the substitute function for tf.placeholder in pytorch? For instance here:
class VAE(object):
def __init__(self, hyperParams):
self.X = tf.placeholder("float", [None, hyperParams['input_d']])
self.prior = hyperParams['prior']
self.K = hyperParams['K']
self.encoder_params = self.init_encoder(hyperParams)
self.decoder_params = self.init_decoder(hyperParams)
and also how should I change tf.shape in this line: tf.random_normal(tf.shape(self.sigma[-1]))
How could I write down similar weights and bias variables and attach them in each hidden layer in PyTorch?
An easier way to define those is to create a list containing the params as (weight, bias) tuples:
def init_mlp(layer_sizes, std=.01, bias_init=0.):
params = []
for n_in, n_out in zip(layer_sizes[:-1], layer_sizes[1:]):
params.append([
nn.init.normal_(torch.empty(n_in, n_out)).requires_grad_(True),
torch.empty(n_out).fill_(bias_init).requires_grad_(True)])
return params
Above I define my parameters as 'empty' (created with uninitialized data) tensors with torch.empty. I have used in-place functions such as nn.init.normal_ (there are many others available) and torch.Tensor.fill_ to fill the tensor with an arbitrary value (maybe it is .mul_(bias_init) you are looking for, based on your TensorFlow sample?).
For the inference code, you don't actually need to store the intermediate layer results:
def mlp(x, params):
for i, (W, b) in enumerate(params):
x = x#W + b
if i < len(params) - 1:
x = torch.relu(x)
return x
How could I convert gauss_cross_entropy and compute_nll functions as well (finding equivalent syntax)?
You can use PyTorch functions and mathematical operators to define your logic. For compute_loss you were using the built-in, which actually does not require summation after it, by default the losses of the batch elements are averaged.
def compute_loss(y_pred, y_true):
return F.binary_cross_entropy_with_logits(y_pred, y_true)
What is the substitute function for tf.placeholder in Pytorch?
You don't have placeholders in PyTorch, you compute your outputs explicitly using PyTorch operators, then you should be able to backpropagate through those operators and get the gradients for each parameter.
How should I change tf.shape in this line: tf.random_normal(tf.shape(self.sigma[-1]))
Function tf.shape returns the shape of the tensor, in PyTorch you call torch.Tensor.shape or by calling torch.Tensor.size: i.e. self.sigma[-1].shape or self.sigma[-1].size().
While training my model I ran into the issue described in the post Tensorflow - Keras: Consider either turning off auto-sharding or switching the auto_shard_policy to DATA to shard this dataset. My question now is: Does the solution mentioned by #Graham501617 work with generators as well? Here is some dummy code for what I use so far:
class BatchGenerator(Sequence):
def __init__(self, some_args):
...
def __len__(self):
num_batches_in_sequence = ...
def __getitem__(self, _):
data, labels = get_one_batch(self.some_args)
return data, labels
In the main script I do something like:
train_generator = BatchGenerator(some_args)
valid_generator = BatchGenerator(some_args)
cross_device_ops = tf.distribute.HierarchicalCopyAllReduce(num_packs=2)
strategy = tf.distribute.MirroredStrategy(cross_device_ops=cross_device_ops)
with strategy.scope():
model = some_model
model.compile(some_args)
history = model.fit(
x=train_generator,
validation_data=valid_generator,
...
)
I would probably have to modify the __getitem__ function somehow, do I?
I appreciate your support!
You'd have to wrap your generator into a single function...
Example below assumes your data is stored as numpy array (.npy), each file already has the correct amount of mini-batch size, is labeled 0_x.npy, 1_x.npy, 2_x.npy, etc.. and both data and label arrays are float64.
from pathlib import Path
import tensorflow as tf
import numpy as np
# Your new generator as a function rather than an object you need to instantiate
def getNextBatch(stop, data_dir):
i = 0
data_dir = data_dir.decode('ascii')
while True:
while i < stop:
x = np.load(str(Path(data_dir + "/" + str(i) + "_x.npy")))
y = np.load(str(Path(data_dir + "/" + str(i) + "_y.npy")))
yield x, y
i += 1
i = 0
# Make a dataset given the directory and strategy
def makeDataset(generator_func, dir, strategy=None):
# Get amount of files
data_size = int(len([name for name in os.listdir(dir) if os.path.isfile(os.path.join(dir, name))])/2)
ds = tf.data.Dataset.from_generator(generator_func, args=[data_size, dir], output_types=(tf.float64, tf.float64)) # Make a dataset from the generator. MAKE SURE TO SPECIFY THE DATA TYPE!!!
options = tf.data.Options()
options.experimental_distribute.auto_shard_policy = tf.data.experimental.AutoShardPolicy.OFF
ds = ds.with_options(options)
# Optional: Make it a distributed dataset if you're using a strategy
if strategy is not None:
ds = strategy.experimental_distribute_dataset(ds)
return ds
training_ds = makeDataset(getNextBatch, str(Path(data_dir + "/training")), None)
validation_ds = makeDataset(getNextBatch, str(Path(data_dir + "/validation")), None)
model.fit(training_ds,
epochs=epochs,
callbacks=callbacks,
validation_data=validation_ds)
You might need to pass the amount of steps per epoch in your fit() call, in which case you can use the generator you've already made.
I am working on a multi-class classification task using my own images.
filenames = [] # a list of filenames
labels = [] # a list of labels corresponding to the filenames
full_ds = tf.data.Dataset.from_tensor_slices((filenames, labels))
This full dataset will be shuffled and split into train, valid and test dataset
full_ds_size = len(filenames)
full_ds = full_ds.shuffle(buffer_size=full_ds_size*2, seed=128) # seed is used for reproducibility
train_ds_size = int(0.64 * full_ds_size)
valid_ds_size = int(0.16 * full_ds_size)
train_ds = full_ds.take(train_ds_size)
remaining = full_ds.skip(train_ds_size)
valid_ds = remaining.take(valid_ds_size)
test_ds = remaining.skip(valid_ds_size)
Now I am struggling to understand how each class is distributed in train_ds, valid_ds and test_ds. An ugly solution is to iterate all the element in the dataset and count the occurrence of each class. Is there any better way to solve it?
My ugly solution:
def get_class_distribution(dataset):
class_distribution = {}
for element in dataset.as_numpy_iterator():
label = element[1]
if label in class_distribution.keys():
class_distribution[label] += 1
else:
class_distribution[label] = 0
# sort dict by key
class_distribution = collections.OrderedDict(sorted(class_distribution.items()))
return class_distribution
train_ds_class_dist = get_class_distribution(train_ds)
valid_ds_class_dist = get_class_distribution(valid_ds)
test_ds_class_dist = get_class_distribution(test_ds)
print(train_ds_class_dist)
print(valid_ds_class_dist)
print(test_ds_class_dist)
The answer below assumes:
there are five classes.
labels are integers from 0 to 4.
It can be modified to suit your needs.
Define a counter function:
def count_class(counts, batch, num_classes=5):
labels = batch['label']
for i in range(num_classes):
cc = tf.cast(labels == i, tf.int32)
counts[i] += tf.reduce_sum(cc)
return counts
Use the reduce operation:
initial_state = dict((i, 0) for i in range(5))
counts = train_ds.reduce(initial_state=initial_state,
reduce_func=count_class)
print([(k, v.numpy()) for k, v in counts.items()])
A solution inspired by user650654 's answer, only using TensorFlow primitives (with tf.unique_with_counts instead of for loop):
In theory, this should have better performance and scale better to large datasets, batches or class count.
num_classes = 5
#tf.function
def count_class(counts, batch):
y, _, c = tf.unique_with_counts(batch[1])
return tf.tensor_scatter_nd_add(counts, tf.expand_dims(y, axis=1), c)
counts = train_ds.reduce(
initial_state=tf.zeros(num_classes, tf.int32),
reduce_func=count_class)
print(counts.numpy())
Similar and simpler version with numpy that actually had better performances for my simple use-case:
count = np.zeros(num_classes, dtype=np.int32)
for _, labels in train_ds:
y, _, c = tf.unique_with_counts(labels)
count[y.numpy()] += c.numpy()
print(count)
I am learning LSTM with tensorflow with enable_eager_execution. However when implementing LSTM, I have noticed the behaviour of tf.nn.softmax
that has made me stuck. Here is a section of my code
class RNN_LSTM(object):
def __init__(self,hidden_size):
data=open('Shakespear.txt', 'r').read()
self.data = data.split()
vocab_size=len(list(set(self.data)))
self.words =list(set(self.data))
self.hidden_size=hidden_size
self.input_size=vocab_size+hidden_size
self.vocab_size=vocab_size
self.W1=tf.Variable(tf.random.uniform((self.hidden_size,self.input_size),dtype=tf.dtypes.float32,name="W1")*0.1)
self.b1=tf.Variable(tf.random.uniform((self.hidden_size,1),dtype=tf.dtypes.float32,name="b1"))
self.W2=tf.Variable(tf.random.uniform((self.hidden_size,self.input_size),dtype=tf.dtypes.float32,name="W2")*0.1)
self.b2=tf.Variable(tf.random.uniform((self.hidden_size,1),dtype=tf.dtypes.float32,name="b2")*0.1)
self.W3=tf.Variable(tf.random.uniform((self.hidden_size,self.input_size),dtype=tf.dtypes.float32,name="W3")*0.1)
self.b3=tf.Variable(tf.random.uniform((self.hidden_size,1),dtype=tf.dtypes.float32,name="b3")*0.1)
self.W4=tf.Variable(tf.random.uniform((hidden_size,self.input_size),dtype=tf.dtypes.float32,name="W4")*0.1)
self.b4=tf.Variable(tf.random.uniform((self.hidden_size,1),dtype=tf.dtypes.float32,name="b4")*0.1)
self.W5=tf.Variable(tf.random.uniform((self.vocab_size,self.hidden_size),dtype=tf.dtypes.float32,name="W5")*0.1)
self.b5=tf.Variable(tf.random.uniform((self.vocab_size,1),dtype=tf.dtypes.float32,name="b5")*0.1)
self.learning_rate=1e-1
self.sequence_length=50
#self.M_c=tf.Variable(tf.zeros((self.input_size,1)),name="M_c")
def one_hot_encoding(self,x,hprev):
M_c=tf.Variable(tf.zeros((self.input_size,1)),name="M_c")
vocab=tf.Variable(tf.zeros((self.vocab_size,1)))
#hprev=tf.Variable(tf.zeros((self.hidden_size,1)))
vocab=vocab.numpy()
vocab[x]=1
M_c=tf.concat((hprev,vocab),axis=0)
return M_c
def feedforward(self,M_c,p_s):
ft=tf.sigmoid( tf.matmul(self.W1,M_c)+self.b1)
it=tf.sigmoid(tf.matmul(self.W2,M_c)+self.b2)
gt=tf.math.tanh(tf.matmul(self.W3,M_c)+self.b3)
cs=tf.multiply(ft,p_s)+tf.multiply(it,gt)
ot=tf.nn.sigmoid(tf.matmul(self.W4,M_c)+self.b4)
ht=tf.multiply(ot,tf.math.tanh(cs))
output=self.softmax(tf.matmul(self.W5,ht)+self.b5)
return ht,output,cs
def sample_text(self,hprev,begin,p_s,n):
vocab=tf.Variable(tf.zeros((self.vocab_size,1)),tf.float32)
vocab=vocab.numpy()
vocab[begin]=1
letters=[]
for i in range(n):
M=tf.Variable(tf.zeros((self.input_size,1)),name="M")
M=tf.assign(M,tf.concat((hprev,vocab),axis=0))
ft=tf.nn.sigmoid(tf.matmul(self.W1,M)+self.b1)
it=tf.nn.sigmoid(tf.matmul(self.W2,M)+self.b2)
gt=tf.math.tanh(tf.matmul(self.W3,M)+self.b3)
cs=tf.multiply(ft,p_s)+tf.multiply(it,gt)
p_s=cs
ot=tf.sigmoid(tf.matmul(self.W4,M)+self.b4)
ht=tf.multiply(ot,tf.math.tanh(cs))
ht=tf.reshape(ht,(self.hidden_size,1))
output=tf.matmul(self.W5,ht)+self.b5
p=self.softmax(output)
#print(p.numpy())
p=tf.reshape(p,(1,self.vocab_size))
samples = tf.random.categorical(p,1)
sample_selected=tf.cast(samples[0][0].numpy(),tf.int32)
selection_sample_np=[i for i in range(self.vocab_size)]
selection_sample_tf=tf.convert_to_tensor(selection_sample_np)
selected_next_letter=selection_sample_tf[sample_selected]
trial=tf.cast(selected_next_letter,tf.int32)
k=tf.Variable(tf.zeros((self.vocab_size,1)),tf.int32)
k[selected_next_letter,0].assign(1)
letters.append(selected_next_letter)
hprev=ht
return letters
def process_input(self):
char_to_ix={ch:ix for ix,ch in enumerate(self.words)}
ix_to_char={ix:ch for ix,ch in enumerate(self.words)}
return char_to_ix,ix_to_char
def softmax(self,z):
return tf.math.exp(z-max(z))/tf.math.reduce_sum(tf.math.exp(z-max(z)))
def AggregatorNew(self):
losses,iterations=[],[]
char_to_ix,ix_to_char=self.process_input()
mem1=tf.Variable(tf.zeros_like(self.W1))
mem2=tf.Variable(tf.zeros_like(self.W2))
mem3=tf.Variable(tf.zeros_like(self.W3))
mem4=tf.Variable(tf.zeros_like(self.W4))
mem5=tf.Variable(tf.zeros_like(self.W5))
mem6=tf.Variable(tf.zeros_like(self.b1))
mem7=tf.Variable(tf.zeros_like(self.b2))
mem8=tf.Variable(tf.zeros_like(self.b3))
mem9=tf.Variable(tf.zeros_like(self.b4))
mem10=tf.Variable(tf.zeros_like(self.b5))
dW1=tf.Variable(tf.zeros_like(self.W1))
dW2=tf.Variable(tf.zeros_like(self.W2))
dW3=tf.Variable(tf.zeros_like(self.W3))
dW4=tf.Variable(tf.zeros_like(self.W4))
dW5=tf.Variable(tf.zeros_like(self.W4))
db1=tf.Variable(tf.zeros_like(self.b1))
db2=tf.Variable(tf.zeros_like(self.b2))
db3=tf.Variable(tf.zeros_like(self.b3))
db4=tf.Variable(tf.zeros_like(self.b4))
db5=tf.Variable(tf.zeros_like(self.b5))
n=0
p=0
self.loss=tf.Variable(0,dtype=tf.dtypes.float32,name="loss")
smooth_loss =-tf.math.log(1.0/self.vocab_size)*self.sequence_length
while(1):
try:
with DelayedKeyboardInterrupt():
if p+self.sequence_length+1>= len(self.data) or n == 0:
hprev=tf.Variable(np.zeros((self.hidden_size,1)),dtype=tf.float32,name="hprev")
p_s=tf.Variable(tf.zeros((self.hidden_size,1)),name="p_s")
p=0
inputs=[char_to_ix[ch] for ch in self.data[p:p+self.sequence_length]]
targets=[char_to_ix[ch] for ch in self.data[p+1:p+self.sequence_length+1]]
sample_ix = self.sample_text(hprev,inputs[0],p_s,200)
list_of_strings=[ix_to_char[ix.numpy()] for ix in sample_ix]
list_of_strings_tf=tf.convert_to_tensor(list_of_strings)
txt = tf.strings.join(list_of_strings_tf,separator=" ")
print ('----\n %s \n----' % (txt.numpy(), ))
#loss=tf.reduce_mean(xentropy,name="loss")
with tf.GradientTape() as g:
for x, y in zip(inputs,targets):
M_c=self.one_hot_encoding(x,hprev)
hprev,output,p_s=self.feedforward(M_c,p_s)
activation=output[y]
loss=-(tf.math.log(activation))
dW1,dW2,dW3,dW4,dW5,db1,db2,db3,db4,db5=g.gradient(loss,[self.W1,self.W2,self.W3,self.W4,self.W5,self.b1,self.b2,self.b3,self.b4,self.b5])
smooth_loss = smooth_loss * 0.999 + loss * 0.001
except KeyboardInterrupt:
sample_ix = self.sample_text(hprev,inputs[0],p_s,200)
txt = ''.join(ix_to_char[ix] for ix in sample_ix)
print ('----\n %s \n----' % (txt, ))
break
when I use self.softmax() it gives me probability values in the output in the feedforward, however when I use tf.nn.softmax() all values of output are strangely 1.
Second question: Is tensorflow generally slower in cpu as compared to a pure python implementation or i am implementing tensorlow wrongly?
If you are using tf.nn.softmax(), and you don't specify the axis, it defaults to tf.nn.softmax(logits ,axis=1) hence giving a tensor ouput where all values are 1s . In my case I was getting wrong values just because of not providing axis i.e tf.nn.softmax(logits,axis=0)
I have been struggling on this and could not get it to work. hope someone can help me with this.
I want to calculate the entropy on each row of the tensor. Because my data are float numbers not integers I think I need to use bin_histogram.
For example a sample of my data is tensor =[[0.2, -0.1, 1],[2.09,-1.4,0.9]]
Just for information My model is seq2seq and written in keras with tensorflow backend.
This is my code so far: I need to correct rev_entropy
class entropy_measure(Layer):
def __init__(self, beta,batch, **kwargs):
self.beta = beta
self.batch = batch
self.uses_learning_phase = True
self.supports_masking = True
super(entropy_measure, self).__init__(**kwargs)
def call(self, x):
return K.in_train_phase(self.rev_entropy(x, self.beta,self.batch), x)
def get_config(self):
config = {'beta': self.beta}
base_config = super(entropy_measure, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
def rev_entropy(self, x, beta,batch):
for i in x:
i = pd.Series(i)
p_data = i.value_counts() # counts occurrence of each value
entropy = entropy(p_data) # get entropy from counts
rev = 1/(1+entropy)
return rev
new_f_w_t = x * (rev.reshape(rev.shape[0], 1))*beta
return new_f_w_t
Any input is much appreciated:)
It looks like you have a series of questions that come together on this issue. I'll settle it here.
You calculate entropy in the following form of scipy.stats.entropy according to your code:
scipy.stats.entropy(pk, qk=None, base=None)
Calculate the entropy of a distribution for given probability values.
If only probabilities pk are given, the entropy is calculated as S =
-sum(pk * log(pk), axis=0).
Tensorflow does not provide a direct API to calculate entropy on each row of the tensor. What we need to do is to implement the above formula.
import tensorflow as tf
import pandas as pd
from scipy.stats import entropy
a = [1.1,2.2,3.3,4.4,2.2,3.3]
res = entropy(pd.value_counts(a))
_, _, count = tf.unique_with_counts(tf.constant(a))
# [1 2 2 1]
prob = count / tf.reduce_sum(count)
# [0.16666667 0.33333333 0.33333333 0.16666667]
tf_res = -tf.reduce_sum(prob * tf.log(prob))
with tf.Session() as sess:
print('scipy version: \n',res)
print('tensorflow version: \n',sess.run(tf_res))
scipy version:
1.329661348854758
tensorflow version:
1.3296613488547582
Then we need to define a function and achieve for loop through tf.map_fn in your custom layer according to above code.
def rev_entropy(self, x, beta,batch):
def row_entropy(row):
_, _, count = tf.unique_with_counts(row)
prob = count / tf.reduce_sum(count)
return -tf.reduce_sum(prob * tf.log(prob))
value_ranges = [-10.0, 100.0]
nbins = 50
new_f_w_t = tf.histogram_fixed_width_bins(x, value_ranges, nbins)
rev = tf.map_fn(row_entropy, new_f_w_t,dtype=tf.float32)
new_f_w_t = x * 1/(1+rev)*beta
return new_f_w_t
Notes that the hidden layer will not produce a gradient that cannot propagate backwards since entropy is calculated on the basis of statistical probabilistic values. Maybe you need to rethink your hidden layer structure.