I have this DataFrame:
df = pd.DataFrame({'day': [1, 1, 1, 2, 2, 2, 3, 3, 3], 'hour': [10, 10, 10, 11, 11, 11, 12, 12, 12], 'sales': [0, 40, 30, 10, 80, 70, 0, 0, 20]})
day hour sales
0 1 10 0
1 1 10 40
2 1 10 30
3 2 11 10
4 2 11 80
5 2 11 70
6 3 12 0
7 3 12 0
8 3 12 20
And I would like to filter to get the first entry of each day that has volume greater than 0. And as an additional thing I would like to change the 'sales' column for these to 9.
So to get something like this:
day hour sales
0 1 10 0
1 1 9 40
2 1 10 30
3 2 9 10
4 2 11 80
5 2 11 70
6 3 12 0
7 3 12 0
8 3 9 20
I only came up with this iterative solution. But is there a solution, how I can apply it in a more functional way?
# Group by day:
groups = df.groupby(by=['day'])
# Get all indices of first non-zero sales entry per day:
indices = []
for name, group in groups:
group = group[group['sales'] > 0]
indices.append(group.index.to_list()[0])
# Change their values:
df.iloc[indices, df.columns.get_loc('hour')] = 9
You can create a group of df['day'] after checking of sales is greater than 0 , then get idxmax and filter out groups which doesnot have any value greater than 0 by using any , then assign with loc[]
g = df['sales'].gt(0).groupby(df['day'])
idx = g.idxmax()
df.loc[idx[g.any()],'hour']=9
print(df)
day hour sales
0 1 10 0
1 1 9 40
2 1 10 30
3 2 9 10
4 2 11 80
5 2 11 70
6 3 12 0
7 3 12 0
8 3 9 20
Create a mask m that groups by day as well as rows where the sales are not 0.
Then, use this mask as well as df['sales'] > 0 to change those specific rows to 9 with np.where()
df = pd.DataFrame({'day': [1, 1, 1, 2, 2, 2, 3, 3, 3],
'hour': [10, 10, 10, 11, 11, 11, 12, 12, 12],
'sales': [0, 40, 30, 10, 80, 70, 0, 0, 20]})
m = df.groupby(['day', df['sales'].ne(0)])['sales'].transform('first')
df['hour'] = np.where((df['sales'] == m) & (df['sales'] > 0), 9, df['hour'])
df
Out[37]:
day hour sales
0 1 10 0
1 1 9 40
2 1 10 30
3 2 9 10
4 2 11 80
5 2 11 70
6 3 12 0
7 3 12 0
8 3 9 20
Related
I would like to create a new column "Group". The integer values from column "Step_ID" should be converted into 1 and 2. The fist two values should be converted to 1, the second two values to 2, the third two values to 1 etc. See the image below.
import pandas as pd
data = {'Step_ID': [1, 1, 2, 2, 3, 4, 5, 6, 6, 7, 8, 8, 9, 10, 11, 11]}
df1 = pd.DataFrame(data)
You can try:
m = (df.Step_ID % 2) + df.Step_ID
df['new_group'] = (m.ne(m.shift()).cumsum() % 2).replace(0,2)
OUTPUT:
Step_ID new_group
0 1 1
1 1 1
2 2 1
3 2 1
4 3 2
5 4 2
6 5 1
7 6 1
8 6 1
9 7 2
10 8 2
11 8 2
12 9 1
13 10 1
14 11 2
15 11 2
I am working with a log system, and I need to group data not in a standard way.
Alas with my limited knowledge of Pandas I couldn't find any example, probably because I don't know proper search terms.
This is a sample dataframe:
df = pd.DataFrame({
"speed": [2, 4, 6, 8, 8, 9, 2, 3, 8, 9, 13, 18, 25, 27, 18, 8, 6, 8, 12, 20, 27, 34, 36, 41, 44, 54, 61, 60, 61, 40, 17, 12, 15, 24],
"class": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 5, 5, 5, 3, 1, 1, 1, 2]
})
df.groupby(by="class").groups returns indexed of each row, all grouped together by class value:
class indexes
1: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 16, 17, 18, 30, 32],
2: [12, 13, 19, 20, 21, 22, 33],
3: [23, 24, 29],
4: [25],
5: [26, 27, 28]
I need instead to split every time column class changes:
speed class
0 2 1
1 4 1
2 6 1
3 8 1
4 8 1
5 9 1
6 2 1
7 3 1
8 8 1
9 9 1
10 13 1
11 18 1
12 25 2 <= split here
13 27 2
14 18 1 <= split here
15 8 1
16 6 1
17 8 1
18 12 1 <= split here
19 20 2
20 27 2
21 34 2
22 36 2 <= split here
23 41 3
24 44 3 <= split here
25 54 4 <= split here
26 61 5
27 60 5
28 61 5 <= split here
29 40 3 <= split here
30 17 1 <= split here
31 12 1
32 15 1
33 24 2 <= split here
The desired grouping should return something like:
class count mean
0 1 12 70.50
1 2 2 26.00
2 1 5 10.40
3 2 4 29.25
4 3 2 42.50
5 4 1 54.00
6 5 3 60.66
7 3 1 40.00
8 1 3 14.66
9 2 1 24.00
Is there any command to do it not iteratively?
Use Series.cumsum with compare if not equal shifted values and aggregate by GroupBy.agg:
g = df["class"].ne(df["class"].shift()).cumsum()
df = (df.groupby(['class', g], sort=False)['speed'].agg(['count','mean'])
.reset_index(level=1, drop=True)
.reset_index())
print (df)
class count mean
0 1 12 7.500000
1 2 2 26.000000
2 1 5 10.400000
3 2 4 29.250000
4 3 2 42.500000
5 4 1 54.000000
6 5 3 60.666667
7 3 1 40.000000
8 1 3 14.666667
9 2 1 24.000000
You can groupby the cumsum of when the class column differs from the value below it:
df.groupby(df["class"].diff().ne(0).cumsum()).speed.agg(['size', 'mean'])
size mean
class
1 12 7.500000
2 2 26.000000
3 5 10.400000
4 4 29.250000
5 2 42.500000
6 1 54.000000
7 3 60.666667
8 1 40.000000
9 3 14.666667
10 1 24.000000
Update: I hadn't seen how you wanted the class column: what you can do is group by the original class column as well as the cumsum above, and do a bit of index-sorting and resetting (but at this point this answer just converges with #jezrael's answer :P)
result = (
df.groupby(["class", df["class"].diff().ne(0).cumsum()])
.speed.agg(["size", "mean"])
.sort_index(level=1)
.reset_index(level=0)
.reset_index(drop=True)
)
class size mean
0 1 12 7.500000
1 2 2 26.000000
2 1 5 10.400000
3 2 4 29.250000
4 3 2 42.500000
5 4 1 54.000000
6 5 3 60.666667
7 3 1 40.000000
8 1 3 14.666667
9 2 1 24.000000
Pandas 1.0.5
import pandas as pd
d = pd.DataFrame({
"card_id": [1, 1, 2, 2, 1, 1, 2, 2],
"day": [1, 1, 1, 1, 2, 2, 2, 2],
"amount": [1, 2, 10, 20, 3, 4, 30, 40]
})
#add columns
d['count'] = d.groupby(['card_id', 'day'])["amount"].transform('count')
d['min'] = d.groupby(['card_id', 'day'])["amount"].transform('min')
d['max'] = d.groupby(['card_id', 'day'])["amount"].transform('max')
I would like to change the three transform lines to one line. I tried this:
d['count', 'min', 'max'] = d.groupby(['card_id', 'day'])["amount"].transform('count', 'min', 'max')
Error: "TypeError: count() takes 1 positional argument but 3 were given"
I also tried this:
d[('count', 'min', 'max')] = d.groupby(['card_id', 'day']).agg(
count = pd.NamedAgg('amount', 'count')
,min = pd.NamedAgg('amount', 'min')
,max = pd.NamedAgg('amount', 'max')
)
Error: "TypeError: incompatible index of inserted column with frame index"
Use merge,
d = pd.DataFrame({
"card_id": [1, 1, 2, 2, 1, 1, 2, 2],
"day": [1, 1, 1, 1, 2, 2, 2, 2],
"amount": [1, 2, 10, 20, 3, 4, 30, 40]
})
df_out = d.groupby(['card_id', 'day']).agg(
count = pd.NamedAgg('amount', 'count')
,min = pd.NamedAgg('amount', 'min')
,max = pd.NamedAgg('amount', 'max')
)
d.merge(df_out, left_on=['card_id', 'day'], right_index=True)
Output:
card_id day amount count min max
0 1 1 1 2 1 2
1 1 1 2 2 1 2
2 2 1 10 2 10 20
3 2 1 20 2 10 20
4 1 2 3 2 3 4
5 1 2 4 2 3 4
6 2 2 30 2 30 40
7 2 2 40 2 30 40
The output of you groupyby is creating a multilevel index and the index of this ouput doesn't match the index of d, hence the error. However, we can join the columns in d to the index in output of the groupby using merge with column names and right_index=True.
You could use the assign function to get the results in one go:
grouping = df.groupby(["card_id", "day"])
df.assign(
count=grouping.transform("count"),
min=grouping.transform("min"),
max=grouping.transform("max"),
)
card_id day amount count min max
0 1 1 1 2 1 2
1 1 1 2 2 1 2
2 2 1 10 2 10 20
3 2 1 20 2 10 20
4 1 2 3 2 3 4
5 1 2 4 2 3 4
6 2 2 30 2 30 40
7 2 2 40 2 30 40
I have the following dataframe:
I would like to get the following output from the dataframe
Is there anyway to group other columns ['B', 'index'] based on column 'A' using groupby aggregate function, pivot_table in pandas.
I couldn't think about an approach to write code.
Use:
df=df.reset_index() #if 'index' not is a colum
g=df['A'].ne(df['A'].shift()).cumsum()
new_df=df.groupby(g,as_index=False).agg(index=('index',list),A=('A','first'),B=('B',lambda x: list(x.unique())))
print(new_df)
In pandas <0.25:
new_df=df.groupby(g,as_index=False).agg({'index':list,'A':'first','B':lambda x: list(x.unique())})
if you want to repeat repeated in the index use the same function for the index column as for B:
new_df=df.groupby(g,as_index=False).agg(index=('index',lambda x: list(x.unique())),A=('A','first'),B=('B',lambda x: list(x.unique())))
print(new_df)
Here is an example:
df=pd.DataFrame({'index':range(20),
'A':[1,1,1,1,2,2,0,0,0,1,1,1,1,1,1,0,0,0,3,3]
,'B':[1,2,3,5,5,5,7,8,9,9,9,12,12,14,15,16,17,18,19,20]})
print(df)
index A B
0 0 1 1
1 1 1 2
2 2 1 3
3 3 1 5
4 4 2 5
5 5 2 5
6 6 0 7
7 7 0 8
8 8 0 9
9 9 1 9
10 10 1 9
11 11 1 12
12 12 1 12
13 13 1 14
14 14 1 15
15 15 0 16
16 16 0 17
17 17 0 18
18 18 3 19
19 19 3 20
g=df['A'].ne(df['A'].shift()).cumsum()
new_df=df.groupby(g,as_index=False).agg(index=('index',list),A=('A','first'),B=('B',lambda x: list(x.unique())))
print(new_df)
index A B
0 [0, 1, 2, 3] 1 [1, 2, 3, 5]
1 [4, 5] 2 [5]
2 [6, 7, 8] 0 [7, 8, 9]
3 [9, 10, 11, 12, 13, 14] 1 [9, 12, 14, 15]
4 [15, 16, 17] 0 [16, 17, 18]
5 [18, 19] 3 [19, 20]
If I have the following data
>>> data = pd.DataFrame({'day': [1, 1, 1, 1, 2, 2, 2, 2, 3, 4],
'hour':[4, 5, 6, 7, 4, 5, 6, 7, 4, 7]})
>>> data
day hour
0 1 4
1 1 5
2 1 6
3 1 7
4 2 4
5 2 5
6 2 6
7 2 7
8 3 4
9 4 7
And I would like to keep only days where hour has 4 unique values then I would think to do something like this
>>> data.groupby('day').apply(lambda x: x[x['hour'].nunique() == 4])
But this returns KeyError: True
I am hoping to get this
>>> data
day hour
0 1 4
1 1 5
2 1 6
3 1 7
4 2 4
5 2 5
6 2 6
7 2 7
Where we see that where day == 3 and day == 4 have been filtered because when grouped by day they don't have 4 unique values of hour. I'm doing this at scale so simply filtering where (day == 3) & (day == 4) is not an option. I think grouping would be a good way to do this but can't get it to work. Anyone have experience with applying functions to DataFrameGroupBy?
I think you actually need to filter the data:
>>> data.groupby('day').filter(lambda x: x['hour'].nunique() == 4)
day hour
0 1 4
1 1 5
2 1 6
3 1 7
4 2 4
5 2 5
6 2 6
7 2 7