Probably this question is for Mapbox team and Delaunator.JS developers, but I hope that somebody could help me here.
I have a pseudo quadtree geometry (THREE.BufferGeometry) set by series of points having seven partitions with their individual draw call (geometry.addGroup() method) and material.
//pseudo quadtree
var points = [], indices = [], quad_uvs = [], groups = [], materials = [];
getSegmentSubpoints(0, new THREE.Vector3(-1024, 0, -1024), 1024, 1024, 4);
getSegmentSubpoints(1, new THREE.Vector3(0, 0, -1024), 1024, 1024, 4);
getSegmentSubpoints(2, new THREE.Vector3(-1024, 0, 0), 1024, 1024, 4);
getSegmentSubpoints(3, new THREE.Vector3(0, 0, 0), 512, 512, 8);
getSegmentSubpoints(4, new THREE.Vector3(512, 0, 0), 512, 512, 8);
getSegmentSubpoints(5, new THREE.Vector3(0, 0, 512), 512, 512, 8);
getSegmentSubpoints(6, new THREE.Vector3(512, 0, 512), 512, 512, 8);
var geometry = new THREE.BufferGeometry().setFromPoints(points);
geometry.setIndex(indices);
geometry.setAttribute( 'uv', new THREE.BufferAttribute(new Float32Array(quad_uvs), 2 ) );
geometry.computeVertexNormals();
var colors = [new THREE.Color(0xe6194b), new THREE.Color(0x3cb44b), new THREE.Color(0xffe119), new THREE.Color(0x4363d8), new THREE.Color(0xf58231), new THREE.Color(0x911eb4), new THREE.Color(0x46f0f0) ]
groups.forEach(function(g_, i_){ geometry.addGroup(g_.start, g_.end, g_.id); });
var plane = new THREE.Mesh(geometry, materials);
plane.rotation.set(Math.PI, 0, 0);
plane.position.set(-1152, 0, 0);
scene.add(plane);
function getSegmentSubpoints(id_, lt_, w_, h_, level_){
var subpoints = [];
var subindices = [];
var subquad = [];
var lastIndex = points.length;
var lastIndex2 = indices.length;
var step = {x: w_ / level_, z: h_ / level_ };
var stepT = {x: 1.0 / level_, z: 1.0 / level_ };
for(var z = 0; z <= level_; z++){
for(var x = 0; x <= level_; x++){
var dx = lt_.x + step.x * x;
var dz = lt_.z + step.z * z;
var dy = noise.simplex2(dx / 512.0, dz / 512.0) * 32.0;
subquad.push(...[stepT.x * x, stepT.z * z]);
subpoints.push(new THREE.Vector3(dx, dy, dz));
}
}
for(var i = 0; i < subpoints.length - level_ - 2; i++) {
if(i % (level_ + 1) != (level_)){
subindices.push(lastIndex + i, lastIndex + i + 1, lastIndex + i + level_ + 2, lastIndex + i + level_ + 2, lastIndex + i + level_ + 1, lastIndex + i);
}
}
points.push(...subpoints);
indices.push(...subindices);
quad_uvs.push(...subquad);
groups.push({id: id_, start: lastIndex2, end: subindices.length});
materials.push(new THREE.MeshBasicMaterial({ wireframe: true, map: new THREE.TextureLoader().load("textures/" + id_ + ".jpg")}));
}
Everything is fine, but for my project I have to process the current geometry through Delaunator.JS and it seems that the output has different triangles/faces indexing starting from the center.
There is dynamic colors for each segment to visualize indexing. Eventually, it has to be the same as previous one with seven materials and individual draw calls.
//delaunay
var geometry = new THREE.BufferGeometry().setFromPoints(points);
var indexDelaunay = Delaunator.from(points.map(v => { return [v.x, v.z]; }) );
var meshIndex = [];
for (let i = 0; i < indexDelaunay.triangles.length; i++){ meshIndex.push(indexDelaunay.triangles[i]); }
geometry.setIndex(meshIndex);
geometry.computeVertexNormals();
count = 0;
for(var i = 0; i < meshIndex.length; i += 6){
geometry.addGroup(i, 6, i / 6);
materials.push(new THREE.MeshBasicMaterial({ wireframe: true, color: new THREE.Color("hsl(" + (360 / 316 * count) + ",80%, 80%)")}))
count++;
}
var plane = new THREE.Mesh(geometry, materials);
plane.rotation.set(Math.PI, 0, 0)
plane.position.set(1152, 0, 0);
scene.add(plane);
So is there a way to re-index faces back so I could get the same result?
Yes, I could go through each Delaunator.triangles check its position/area for if it fits the certain partition, but it's not an elegant and fast solution. I bet it's possible to tweak Delaunator.JS code for right indexing on the fly.
The snippet is attached as well.
//https://hofk.de/main/discourse.threejs/2018/Triangulation/Triangulation.html
////by Mapbox https://github.com/mapbox/delaunator
(function (global, factory) {
typeof exports === 'object' && typeof module !== 'undefined' ? module.exports = factory() :
typeof define === 'function' && define.amd ? define(factory) :
(global.Delaunator = factory());
}(this, (function () { 'use strict';
var EPSILON = Math.pow(2, -52);
var Delaunator = function Delaunator(coords) {
var this$1 = this;
var n = coords.length >> 1;
if (n > 0 && typeof coords[0] !== 'number') { throw new Error('Expected coords to contain numbers.'); }
this.coords = coords;
var maxTriangles = 2 * n - 5;
var triangles = this.triangles = new Uint32Array(maxTriangles * 3);
var halfedges = this.halfedges = new Int32Array(maxTriangles * 3);
this._hashSize = Math.ceil(Math.sqrt(n));
var hullPrev = this.hullPrev = new Uint32Array(n);
var hullNext = this.hullNext = new Uint32Array(n);
var hullTri = this.hullTri = new Uint32Array(n);
var hullHash = new Int32Array(this._hashSize).fill(-1);
var ids = new Uint32Array(n);
var minX = Infinity;
var minY = Infinity;
var maxX = -Infinity;
var maxY = -Infinity;
for (var i = 0; i < n; i++) {
var x = coords[2 * i];
var y = coords[2 * i + 1];
if (x < minX) { minX = x; }
if (y < minY) { minY = y; }
if (x > maxX) { maxX = x; }
if (y > maxY) { maxY = y; }
ids[i] = i;
}
var cx = (minX + maxX) / 2;
var cy = (minY + maxY) / 2;
var minDist = Infinity;
var i0, i1, i2;
for (var i$1 = 0; i$1 < n; i$1++) {
var d = dist(cx, cy, coords[2 * i$1], coords[2 * i$1 + 1]);
if (d < minDist) {
i0 = i$1;
minDist = d;
}
}
var i0x = coords[2 * i0];
var i0y = coords[2 * i0 + 1];
minDist = Infinity;
for (var i$2 = 0; i$2 < n; i$2++) {
if (i$2 === i0) { continue; }
var d$1 = dist(i0x, i0y, coords[2 * i$2], coords[2 * i$2 + 1]);
if (d$1 < minDist && d$1 > 0) {
i1 = i$2;
minDist = d$1;
}
}
var i1x = coords[2 * i1];
var i1y = coords[2 * i1 + 1];
var minRadius = Infinity;
for (var i$3 = 0; i$3 < n; i$3++) {
if (i$3 === i0 || i$3 === i1) { continue; }
var r = circumradius(i0x, i0y, i1x, i1y, coords[2 * i$3], coords[2 * i$3 + 1]);
if (r < minRadius) {
i2 = i$3;
minRadius = r;
}
}
var i2x = coords[2 * i2];
var i2y = coords[2 * i2 + 1];
if (minRadius === Infinity) {
throw new Error('No Delaunay triangulation exists for this input.');
}
if (orient(i0x, i0y, i1x, i1y, i2x, i2y)) {
var i$4 = i1;
var x$1 = i1x;
var y$1 = i1y;
i1 = i2;
i1x = i2x;
i1y = i2y;
i2 = i$4;
i2x = x$1;
i2y = y$1;
}
var center = circumcenter(i0x, i0y, i1x, i1y, i2x, i2y);
this._cx = center.x;
this._cy = center.y;
var dists = new Float64Array(n);
for (var i$5 = 0; i$5 < n; i$5++) {
dists[i$5] = dist(coords[2 * i$5], coords[2 * i$5 + 1], center.x, center.y);
}
quicksort(ids, dists, 0, n - 1);
this.hullStart = i0;
var hullSize = 3;
hullNext[i0] = hullPrev[i2] = i1;
hullNext[i1] = hullPrev[i0] = i2;
hullNext[i2] = hullPrev[i1] = i0;
hullTri[i0] = 0;
hullTri[i1] = 1;
hullTri[i2] = 2;
hullHash[this._hashKey(i0x, i0y)] = i0;
hullHash[this._hashKey(i1x, i1y)] = i1;
hullHash[this._hashKey(i2x, i2y)] = i2;
this.trianglesLen = 0;
this._addTriangle(i0, i1, i2, -1, -1, -1);
for (var k = 0, xp = (void 0), yp = (void 0); k < ids.length; k++) {
var i$6 = ids[k];
var x$2 = coords[2 * i$6];
var y$2 = coords[2 * i$6 + 1];
if (k > 0 && Math.abs(x$2 - xp) <= EPSILON && Math.abs(y$2 - yp) <= EPSILON) { continue; }
xp = x$2;
yp = y$2;
if (i$6 === i0 || i$6 === i1 || i$6 === i2) { continue; }
var start = 0;
for (var j = 0, key = this._hashKey(x$2, y$2); j < this._hashSize; j++) {
start = hullHash[(key + j) % this$1._hashSize];
if (start !== -1 && start !== hullNext[start]) { break; }
}
start = hullPrev[start];
var e = start, q = (void 0);
while (q = hullNext[e], !orient(x$2, y$2, coords[2 * e], coords[2 * e + 1], coords[2 * q], coords[2 * q + 1])) {
e = q;
if (e === start) {
e = -1;
break;
}
}
if (e === -1) { continue; }
var t = this$1._addTriangle(e, i$6, hullNext[e], -1, -1, hullTri[e]);
hullTri[i$6] = this$1._legalize(t + 2);
hullTri[e] = t;
hullSize++;
var n$1 = hullNext[e];
while (q = hullNext[n$1], orient(x$2, y$2, coords[2 * n$1], coords[2 * n$1 + 1], coords[2 * q], coords[2 * q + 1])) {
t = this$1._addTriangle(n$1, i$6, q, hullTri[i$6], -1, hullTri[n$1]);
hullTri[i$6] = this$1._legalize(t + 2);
hullNext[n$1] = n$1;
hullSize--;
n$1 = q;
}
if (e === start) {
while (q = hullPrev[e], orient(x$2, y$2, coords[2 * q], coords[2 * q + 1], coords[2 * e], coords[2 * e + 1])) {
t = this$1._addTriangle(q, i$6, e, -1, hullTri[e], hullTri[q]);
this$1._legalize(t + 2);
hullTri[q] = t;
hullNext[e] = e;
hullSize--;
e = q;
}
}
this$1.hullStart = hullPrev[i$6] = e;
hullNext[e] = hullPrev[n$1] = i$6;
hullNext[i$6] = n$1;
hullHash[this$1._hashKey(x$2, y$2)] = i$6;
hullHash[this$1._hashKey(coords[2 * e], coords[2 * e + 1])] = e;
}
this.hull = new Uint32Array(hullSize);
for (var i$7 = 0, e$1 = this.hullStart; i$7 < hullSize; i$7++) {
this$1.hull[i$7] = e$1;
e$1 = hullNext[e$1];
}
this.hullPrev = this.hullNext = this.hullTri = null;
this.triangles = triangles.subarray(0, this.trianglesLen);
this.halfedges = halfedges.subarray(0, this.trianglesLen);
};
Delaunator.from = function from (points, getX, getY) {
if ( getX === void 0 ) getX = defaultGetX;
if ( getY === void 0 ) getY = defaultGetY;
var n = points.length;
var coords = new Float64Array(n * 2);
for (var i = 0; i < n; i++) {
var p = points[i];
coords[2 * i] = getX(p);
coords[2 * i + 1] = getY(p);
}
return new Delaunator(coords);
};
Delaunator.prototype._hashKey = function _hashKey (x, y) {
return Math.floor(pseudoAngle(x - this._cx, y - this._cy) * this._hashSize) % this._hashSize;
};
Delaunator.prototype._legalize = function _legalize (a) {
var this$1 = this;
var ref = this;
var triangles = ref.triangles;
var coords = ref.coords;
var halfedges = ref.halfedges;
var b = halfedges[a];
var a0 = a - a % 3;
var b0 = b - b % 3;
var al = a0 + (a + 1) % 3;
var ar = a0 + (a + 2) % 3;
var bl = b0 + (b + 2) % 3;
if (b === -1) { return ar; }
var p0 = triangles[ar];
var pr = triangles[a];
var pl = triangles[al];
var p1 = triangles[bl];
var illegal = inCircle(
coords[2 * p0], coords[2 * p0 + 1],
coords[2 * pr], coords[2 * pr + 1],
coords[2 * pl], coords[2 * pl + 1],
coords[2 * p1], coords[2 * p1 + 1]);
if (illegal) {
triangles[a] = p1;
triangles[b] = p0;
var hbl = halfedges[bl];
if (hbl === -1) {
var e = this.hullStart;
do {
if (this$1.hullTri[e] === bl) {
this$1.hullTri[e] = a;
break;
}
e = this$1.hullNext[e];
} while (e !== this.hullStart);
}
this._link(a, hbl);
this._link(b, halfedges[ar]);
this._link(ar, bl);
var br = b0 + (b + 1) % 3;
this._legalize(a);
return this._legalize(br);
}
return ar;
};
Delaunator.prototype._link = function _link (a, b) {
this.halfedges[a] = b;
if (b !== -1) { this.halfedges[b] = a; }
};
Delaunator.prototype._addTriangle = function _addTriangle (i0, i1, i2, a, b, c) {
var t = this.trianglesLen;
this.triangles[t] = i0;
this.triangles[t + 1] = i1;
this.triangles[t + 2] = i2;
this._link(t, a);
this._link(t + 1, b);
this._link(t + 2, c);
this.trianglesLen += 3;
return t;
};
function pseudoAngle(dx, dy) {
var p = dx / (Math.abs(dx) + Math.abs(dy));
return (dy > 0 ? 3 - p : 1 + p) / 4;
}
function dist(ax, ay, bx, by) {
var dx = ax - bx;
var dy = ay - by;
return dx * dx + dy * dy;
}
function orient(px, py, qx, qy, rx, ry) {
return (qy - py) * (rx - qx) - (qx - px) * (ry - qy) < 0;
}
function inCircle(ax, ay, bx, by, cx, cy, px, py) {
var dx = ax - px;
var dy = ay - py;
var ex = bx - px;
var ey = by - py;
var fx = cx - px;
var fy = cy - py;
var ap = dx * dx + dy * dy;
var bp = ex * ex + ey * ey;
var cp = fx * fx + fy * fy;
return dx * (ey * cp - bp * fy) -
dy * (ex * cp - bp * fx) +
ap * (ex * fy - ey * fx) < 0;
}
function circumradius(ax, ay, bx, by, cx, cy) {
var dx = bx - ax;
var dy = by - ay;
var ex = cx - ax;
var ey = cy - ay;
var bl = dx * dx + dy * dy;
var cl = ex * ex + ey * ey;
var d = 0.5 / (dx * ey - dy * ex);
var x = (ey * bl - dy * cl) * d;
var y = (dx * cl - ex * bl) * d;
return x * x + y * y;
}
function circumcenter(ax, ay, bx, by, cx, cy) {
var dx = bx - ax;
var dy = by - ay;
var ex = cx - ax;
var ey = cy - ay;
var bl = dx * dx + dy * dy;
var cl = ex * ex + ey * ey;
var d = 0.5 / (dx * ey - dy * ex);
var x = ax + (ey * bl - dy * cl) * d;
var y = ay + (dx * cl - ex * bl) * d;
return {x: x, y: y};
}
function quicksort(ids, dists, left, right) {
if (right - left <= 20) {
for (var i = left + 1; i <= right; i++) {
var temp = ids[i];
var tempDist = dists[temp];
var j = i - 1;
while (j >= left && dists[ids[j]] > tempDist) { ids[j + 1] = ids[j--]; }
ids[j + 1] = temp;
}
} else {
var median = (left + right) >> 1;
var i$1 = left + 1;
var j$1 = right;
swap(ids, median, i$1);
if (dists[ids[left]] > dists[ids[right]]) { swap(ids, left, right); }
if (dists[ids[i$1]] > dists[ids[right]]) { swap(ids, i$1, right); }
if (dists[ids[left]] > dists[ids[i$1]]) { swap(ids, left, i$1); }
var temp$1 = ids[i$1];
var tempDist$1 = dists[temp$1];
while (true) {
do { i$1++; } while (dists[ids[i$1]] < tempDist$1);
do { j$1--; } while (dists[ids[j$1]] > tempDist$1);
if (j$1 < i$1) { break; }
swap(ids, i$1, j$1);
}
ids[left + 1] = ids[j$1];
ids[j$1] = temp$1;
if (right - i$1 + 1 >= j$1 - left) {
quicksort(ids, dists, i$1, right);
quicksort(ids, dists, left, j$1 - 1);
} else {
quicksort(ids, dists, left, j$1 - 1);
quicksort(ids, dists, i$1, right);
}
}
}
function swap(arr, i, j) {
var tmp = arr[i];
arr[i] = arr[j];
arr[j] = tmp;
}
function defaultGetX(p) {
return p[0];
}
function defaultGetY(p) {
return p[1];
}
return Delaunator;
})));
var renderer, scene, camera, controls, loader, terrain, glsl, uniforms, root, tree;
renderer = new THREE.WebGLRenderer({
antialias: true
});
renderer.setPixelRatio(window.devicePixelRatio);
renderer.setSize(window.innerWidth, window.innerHeight);
renderer.setClearColor(0x000000);
document.body.appendChild(renderer.domElement);
scene = new THREE.Scene();
loader = new THREE.TextureLoader();
loader.crossOrigin = "";
camera = new THREE.PerspectiveCamera(35, window.innerWidth / window.innerHeight, 1, 51200);
camera.position.set(-3072, 2048, -3072);
controls = new THREE.OrbitControls(camera, renderer.domElement);
controls.enableDamping = true;
controls.dampingFactor = 0.05;
controls.screenSpacePanning = false;
controls.minDistance = 8;
controls.maxDistance = 10240;
controls.maxPolarAngle = Math.PI / 2;
//simple pseudo quadtree
var points = [], indices = [], quad_uvs = [], groups = [], materials = [];
getSegmentSubpoints(0, new THREE.Vector3(-1024, 0, -1024), 1024, 1024, 4);
getSegmentSubpoints(1, new THREE.Vector3(0, 0, -1024), 1024, 1024, 4);
getSegmentSubpoints(2, new THREE.Vector3(-1024, 0, 0), 1024, 1024, 4);
getSegmentSubpoints(3, new THREE.Vector3(0, 0, 0), 512, 512, 8);
getSegmentSubpoints(4, new THREE.Vector3(512, 0, 0), 512, 512, 8);
getSegmentSubpoints(5, new THREE.Vector3(0, 0, 512), 512, 512, 8);
getSegmentSubpoints(6, new THREE.Vector3(512, 0, 512), 512, 512, 8);
var geometry = new THREE.BufferGeometry().setFromPoints(points);
geometry.setIndex(indices);
geometry.setAttribute( 'uv', new THREE.BufferAttribute(new Float32Array(quad_uvs), 2 ) );
geometry.computeVertexNormals();
var materials = [];
var colors = [new THREE.Color(0xe6194b), new THREE.Color(0x3cb44b), new THREE.Color(0xffe119), new THREE.Color(0x4363d8), new THREE.Color(0xf58231), new THREE.Color(0x911eb4), new THREE.Color(0x46f0f0) ]
groups.forEach(function(g_, i_){ geometry.addGroup(g_.start, g_.end, g_.id); materials.push(new THREE.MeshBasicMaterial({wireframe: true, color: colors[i_]})) });
var plane = new THREE.Mesh(geometry, materials);
plane.rotation.set(Math.PI, 0, 0);
plane.position.set(-1152, 0, 0);
scene.add(plane);
//delaunay
materials = [];
var geometry = new THREE.BufferGeometry().setFromPoints(points);
var indexDelaunay = Delaunator.from(points.map(v => { return [v.x, v.z]; }) );
var meshIndex = [];
for (let i = 0; i < indexDelaunay.triangles.length; i++){ meshIndex.push(indexDelaunay.triangles[i]); }
geometry.setIndex(meshIndex);
geometry.computeVertexNormals();
count = 0;
for(var i = 0; i < meshIndex.length; i += 6){
geometry.addGroup(i, 6, i / 6);
materials.push(new THREE.MeshBasicMaterial({ wireframe: true, color: new THREE.Color("hsl(" + (360 / 316 * count) + ",80%, 80%)")}))
count++;
}
var plane = new THREE.Mesh(geometry, materials); //new THREE.MeshBasicMaterial({color: 0xFF00FF, side: THREE.DoubleSide, wireframe: true}) );
plane.rotation.set(Math.PI, 0, 0)
plane.position.set(1152, 0, 0);
scene.add(plane);
animate();
function getSegmentSubpoints(id_, lt_, w_, h_, level_){
var subpoints = [];
var subindices = [];
var subquad = [];
var lastIndex = points.length;
var lastIndex2 = indices.length;
var step = {x: w_ / level_, z: h_ / level_ };
var stepT = {x: 1.0 / level_, z: 1.0 / level_ };
for(var z = 0; z <= level_; z++){
for(var x = 0; x <= level_; x++){
var dx = lt_.x + step.x * x;
var dz = lt_.z + step.z * z;
var dy = 0;
subquad.push(...[stepT.x * x, stepT.z * z]);
subpoints.push(new THREE.Vector3(dx, dy, dz));
}
}
for(var i = 0; i < subpoints.length - level_ - 2; i++) {
if(i % (level_ + 1) != (level_)){
subindices.push(lastIndex + i, lastIndex + i + 1, lastIndex + i + level_ + 2, lastIndex + i + level_ + 2, lastIndex + i + level_ + 1, lastIndex + i);
}
}
points.push(...subpoints);
indices.push(...subindices);
quad_uvs.push(...subquad);
groups.push({id: id_, start: lastIndex2, end: subindices.length});
materials.push(new THREE.MeshBasicMaterial({ wireframe: true, map: new THREE.TextureLoader().load("textures/" + id_ + ".jpg")}));
}
function animate(){
controls.update();
renderer.render(scene, camera);
requestAnimationFrame(animate);
}
body { margin: 0; }
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<title>GLSL Intersection</title>
<meta name="viewport" content="initial-scale=1,maximum-scale=1,user-scalable=no" />
<script src="https://unpkg.com/three#0.116.0/build/three.min.js"></script>
<script src="https://unpkg.com/three#0.116.0/examples/js/controls/OrbitControls.js"></script>
</head>
<body>
</body>
</html>
I am planning to build an antenna tracker. I need to get bearing and tilt from GPS point A with altitude and GPS point B with altitude.
This is the example points:
latA = 39.099912
lonA = -94.581213
altA = 273.543
latB = 38.627089
lonB = -90.200203
altB = 1380.245
I've already got the formula for horizontal bearing and it gives me 97.89138167122422
This is the code:
function toRadian(num) {
return num * (Math.PI / 180);
}
function toDegree(num) {
return num * (180 / Math.PI);
}
function getHorizontalBearing(fromLat, fromLon, toLat, toLon) {
fromLat = toRadian(fromLat);
fromLon = toRadian(fromLon);
toLat = toRadian(toLat);
toLon = toRadian(toLon);
let dLon = toLon - fromLon;
let x = Math.tan(toLat / 2 + Math.PI / 4);
let y = Math.tan(fromLat / 2 + Math.PI / 4);
let dPhi = Math.log(x / y);
if (Math.abs(dLon) > Math.PI) {
if (dLon > 0.0) {
dLon = -(2 * Math.PI - dLon);
} else {
dLon = (2 * Math.PI + dLon);
}
}
return (toDegree(Math.atan2(dLon, dPhi)) + 360) % 360;
}
let n = getHorizontalBearing(39.099912, -94.581213, 38.627089, -90.200203);
console.info(n);
But I don't know how to find the tilt angle. Anyone could help me?
I think I got the answer after searching around.
This is the complete code, if you think this is wrong, feel free to correct me.
function toRadian(num) {
return num * (Math.PI / 180);
}
function toDegree(num) {
return num * (180 / Math.PI);
}
// North is 0 degree, South is 180 degree
function getHorizontalBearing(fromLat, fromLon, toLat, toLon, currentBearing) {
fromLat = toRadian(fromLat);
fromLon = toRadian(fromLon);
toLat = toRadian(toLat);
toLon = toRadian(toLon);
let dLon = toLon - fromLon;
let x = Math.tan(toLat / 2 + Math.PI / 4);
let y = Math.tan(fromLat / 2 + Math.PI / 4);
let dPhi = Math.log(x / y);
if (Math.abs(dLon) > Math.PI) {
if (dLon > 0.0) {
dLon = -(2 * Math.PI - dLon);
} else {
dLon = (2 * Math.PI + dLon);
}
}
let targetBearing = (toDegree(Math.atan2(dLon, dPhi)) + 360) % 360;
return targetBearing - currentBearing;
}
// Horizon is 0 degree, Up is 90 degree
function getVerticalBearing(fromLat, fromLon, fromAlt, toLat, toLon, toAlt, currentElevation) {
fromLat = toRadian(fromLat);
fromLon = toRadian(fromLon);
toLat = toRadian(toLat);
toLon = toRadian(toLon);
let fromECEF = getECEF(fromLat, fromLon, fromAlt);
let toECEF = getECEF(toLat, toLon, toAlt);
let deltaECEF = getDeltaECEF(fromECEF, toECEF);
let d = (fromECEF[0] * deltaECEF[0] + fromECEF[1] * deltaECEF[1] + fromECEF[2] * deltaECEF[2]);
let a = ((fromECEF[0] * fromECEF[0]) + (fromECEF[1] * fromECEF[1]) + (fromECEF[2] * fromECEF[2]));
let b = ((deltaECEF[0] * deltaECEF[0]) + (deltaECEF[2] * deltaECEF[2]) + (deltaECEF[2] * deltaECEF[2]));
let elevation = toDegree(Math.acos(d / Math.sqrt(a * b)));
elevation = 90 - elevation;
return elevation - currentElevation;
}
function getDeltaECEF(from, to) {
let X = to[0] - from[0];
let Y = to[1] - from[1];
let Z = to[2] - from[2];
return [X, Y, Z];
}
function getECEF(lat, lon, alt) {
let radius = 6378137;
let flatteningDenom = 298.257223563;
let flattening = 0.003352811;
let polarRadius = 6356752.312106893;
let asqr = radius * radius;
let bsqr = polarRadius * polarRadius;
let e = Math.sqrt((asqr-bsqr)/asqr);
// let eprime = Math.sqrt((asqr-bsqr)/bsqr);
let N = getN(radius, e, lat);
let ratio = (bsqr / asqr);
let X = (N + alt) * Math.cos(lat) * Math.cos(lon);
let Y = (N + alt) * Math.cos(lat) * Math.sin(lon);
let Z = (ratio * N + alt) * Math.sin(lat);
return [X, Y, Z];
}
function getN(a, e, latitude) {
let sinlatitude = Math.sin(latitude);
let denom = Math.sqrt(1 - e * e * sinlatitude * sinlatitude);
return a / denom;
}
let n = getHorizontalBearing(39.099912, -94.581213, 39.099912, -94.588032, 0.00);
console.info("Horizontal bearing:\t", n);
let m = getVerticalBearing(39.099912, -94.581213, 273.543, 39.099912, -94.588032, 873.543, 0.0);
console.info("Vertical bearing:\t", m);
Don Cross's javascript code produces good results. It takes into consideration the curvature of the earth plus the fact that the earth is oblate.
Example:
var elDegrees = calculateElevationAngleCosineKitty(
{latitude: 35.346257, longitude: -97.863801, altitudeMetres: 10},
{latitude: 34.450545, longitude: -96.500167, altitudeMetres: 9873}
);
console.log("El: " + elDegrees);
/***********************************
Code by Don Cross at cosinekitty.com
http://cosinekitty.com/compass.html
************************************/
function calculateElevationAngleCosineKitty(source, target)
{
var oblate = true;
var a = {'lat':source.latitude, 'lon':source.longitude, 'elv':source.altitudeMetres};
var b = {'lat':target.latitude, 'lon':target.longitude, 'elv':target.altitudeMetres};
var ap = LocationToPoint(a, oblate);
var bp = LocationToPoint(b, oblate);
var bma = NormalizeVectorDiff(bp, ap);
var elevation = 90.0 - (180.0 / Math.PI)*Math.acos(bma.x*ap.nx + bma.y*ap.ny + bma.z*ap.nz);
return elevation;
}
function NormalizeVectorDiff(b, a)
{
// Calculate norm(b-a), where norm divides a vector by its length to produce a unit vector.
var dx = b.x - a.x;
var dy = b.y - a.y;
var dz = b.z - a.z;
var dist2 = dx*dx + dy*dy + dz*dz;
if (dist2 == 0) {
return null;
}
var dist = Math.sqrt(dist2);
return { 'x':(dx/dist), 'y':(dy/dist), 'z':(dz/dist), 'radius':1.0 };
}
function EarthRadiusInMeters (latitudeRadians) // latitude is geodetic, i.e. that reported by GPS
{
// http://en.wikipedia.org/wiki/Earth_radius
var a = 6378137.0; // equatorial radius in meters
var b = 6356752.3; // polar radius in meters
var cos = Math.cos (latitudeRadians);
var sin = Math.sin (latitudeRadians);
var t1 = a * a * cos;
var t2 = b * b * sin;
var t3 = a * cos;
var t4 = b * sin;
return Math.sqrt ((t1*t1 + t2*t2) / (t3*t3 + t4*t4));
}
function GeocentricLatitude(lat)
{
// Convert geodetic latitude 'lat' to a geocentric latitude 'clat'.
// Geodetic latitude is the latitude as given by GPS.
// Geocentric latitude is the angle measured from center of Earth between a point and the equator.
// https://en.wikipedia.org/wiki/Latitude#Geocentric_latitude
var e2 = 0.00669437999014;
var clat = Math.atan((1.0 - e2) * Math.tan(lat));
return clat;
}
function LocationToPoint(c, oblate)
{
// Convert (lat, lon, elv) to (x, y, z).
var lat = c.lat * Math.PI / 180.0;
var lon = c.lon * Math.PI / 180.0;
var radius = oblate ? EarthRadiusInMeters(lat) : 6371009;
var clat = oblate ? GeocentricLatitude(lat) : lat;
var cosLon = Math.cos(lon);
var sinLon = Math.sin(lon);
var cosLat = Math.cos(clat);
var sinLat = Math.sin(clat);
var x = radius * cosLon * cosLat;
var y = radius * sinLon * cosLat;
var z = radius * sinLat;
// We used geocentric latitude to calculate (x,y,z) on the Earth's ellipsoid.
// Now we use geodetic latitude to calculate normal vector from the surface, to correct for elevation.
var cosGlat = Math.cos(lat);
var sinGlat = Math.sin(lat);
var nx = cosGlat * cosLon;
var ny = cosGlat * sinLon;
var nz = sinGlat;
x += c.elv * nx;
y += c.elv * ny;
z += c.elv * nz;
return {'x':x, 'y':y, 'z':z, 'radius':radius, 'nx':nx, 'ny':ny, 'nz':nz};
}
/***********************
END cosinekitty.com code
************************/
Could someone please help me with this function? This function is inside of a camera app that uses a filter algorithm to detect differences in colour variants etc. The syntax is very difficult for me. I don't know how to deal with the pointers in the arguments, the min and max variable syntax, what is delta etc? Could someone please translate for me? Much appreciated.
Also should I be doing something with UIColor? Someone mentioned it below. I have no idea how to convert though.
// r,g,b values are from 0 to 1 // h = [0,360], s = [0,1], v = [0,1]
// if s == 0, then h = -1 (undefined)
void RGBtoHSV( float r, float g, float b, float *h, float *s, float *v ) {
float min, max, delta;
min = MIN( r, MIN(g, b ));
max = MAX( r, MAX(g, b ));
*v = max;
delta = max - min;
if( max != 0 )
*s = delta / max;
else {
// r = g = b = 0
*s = 0;
*h = -1;
return;
}
if( r == max )
*h = ( g - b ) / delta;
else if( g == max )
*h=2+(b-r)/delta;
else
*h=4+(r-g)/delta;
*h *= 60;
if( *h < 0 )
*h += 360;
}
Swift translation attempt
// r,g,b values are from 0 to 1 // h = [0,360], s = [0,1], v = [0,1]
// if s == 0, then h = -1 (undefined)
func RGBtoHSV(r:Float, g:Float, b:Float, h:Float, s:Float, v:Float) {
var min:Float = 0.0
var max:Float = 0.0
var delta:Float = 0.0
min = MIN(r, MIN(g, b))
max = MAX(r, MAX(g, b))
var v = max
delta = max - min
if max != 0 {
var s = delta / max
}
else{
// r = g = b = 0
var s = 0
var h = -1
return
}
if r == max {
var h = (g - b) / delta
}
else if (g == max) {
var h = 2 + (b - r ) / delta
}
else{
var h = 4 + (r - g) / delta
var h = 60
}
if (h < 0) {
var h += 360 // how to deal with all of these pointers here in the original Obj-C function above?
}
}
The Swift equivalent of passing a pointer (the address of a variable)
is an "inout parameter":
func RGBtoHSV(r : Float, g : Float, b : Float, inout h : Float, inout s : Float, inout v : Float) {
let rgbMin = min(r, g, b)
let rgbMax = max(r, g, b)
let delta = rgbMax - rgbMin
v = rgbMax
s = delta/rgbMax
h = Float(0.0) // Replace by your actual calculation
}
This would be called as
let r : Float = 0.3
let g : Float = 0.5
let b : Float = 0.7
var h : Float = 0.0
var s : Float = 0.0
var v : Float = 0.0
RGBtoHSV(r, g, b, &h, &s, &v)
println([h, s, v])
But in Swift there is a better way to return multiple values:
You can return a tuple:
func RGBtoHSV(r : Float, g : Float, b : Float) -> (h : Float, s : Float, v : Float) {
let rgbMin = min(r, g, b)
let rgbMax = max(r, g, b)
let delta = rgbMax - rgbMin
let v = rgbMax
let s = delta/rgbMax
let h = Float(0.0) // Replace by your actual calculation
return (h, s, v)
}
And this would be called as
let r : Float = 0.3
let g : Float = 0.5
let b : Float = 0.7
let (h, s, v) = RGBtoHSV(r, g, b)
println([h, s, v])
Note that on iOS you can simply use the UIColor class to convert
between RGB and HSV (== HSB):
func RGBtoHSV(r : CGFloat, g : CGFloat, b : CGFloat) -> (h : CGFloat, s : CGFloat, v : CGFloat) {
var h : CGFloat = 0.0
var s : CGFloat = 0.0
var v : CGFloat = 0.0
let col = UIColor(red: r, green: g, blue: b, alpha: 1.0)
col.getHue(&h, saturation: &s, brightness: &v, alpha: nil)
return (h, s, v)
}
(or use the various extension/convenience methods from
What is the best/shortest way to convert a UIColor to hex (web color) in Swift?)
I am trying to populate a circumference with points located at equal intervals. Here is the code (it uses some Processing, but it is not crucial for understanding):
class Circle (x: Float, y: Float, subdivisions: Int, radius: Float) extends WorldObject(x, y) {
def subs = subdivisions
def r = radius
val d = r + r
def makePoints() : List[Glyph] = {
val step = PConstants.TWO_PI / subdivisions
val points = List.make(subdivisions, new Glyph())
for(i <- 0 to subdivisions - 1) {
points(i) position (PApplet.cos(step * i) * r + xPos, PApplet.sin(step * i) * r + yPos)
}
points
}
val points: List[Glyph] = makePoints()
override def draw() {
applet fill 0
applet stroke 255
applet ellipse(x, y, d, d)
applet fill 255
points map(_.update())
}
}
class Glyph(x: Float, y: Float) extends WorldObject(x, y){
def this() = this(0, 0)
override def draw() {
applet ellipse(xPos, yPos, 10, 10)
}
}
object WorldObject {
}
abstract class WorldObject(var xPos: Float, var yPos: Float) {
def this() = this(0, 0)
def x = xPos
def y = yPos
def update() {
draw()
}
def draw()
def position(x: Float, y: Float) {
xPos = x
yPos = y
}
def move(dx: Float, dy: Float) {
xPos += dx
yPos += dy
}
}
The strange result that I get is that all the points are located at a single place. I have experimented with println checks... the checks in the makePoints() method shows everything ok, but checks in the Circle.draw() or even right after the makePoints() show the result as I see it on the screen - all points are located in a single place, right where the last of them is generated, namely x=430.9017 y=204.89435 for a circle positioned at x=400 y=300 and subdivided to 5 points. So somehow they all get collected into the place where the last of them sits.
Why is there such a behavior? What am I doing wrong?
UPD: We have been able to locate the reason, see below:
Answering the question, user unknown changed the code to use the fill method instead of make. The main relevant difference between them is that make pre-computes it's arguments and fill does not. Thus make fills the list with totally identical items. However, fill repeats the computation on each addition. Here are the source codes of these methods from Scala sources:
/** Create a list containing several copies of an element.
*
* #param n the length of the resulting list
* #param elem the element composing the resulting list
* #return a list composed of n elements all equal to elem
*/
#deprecated("use `fill' instead", "2.8.0")
def make[A](n: Int, elem: A): List[A] = {
val b = new ListBuffer[A]
var i = 0
while (i < n) {
b += elem
i += 1
}
b.toList
}
And the fill method:
/** Produces a $coll containing the results of some element computation a number of times.
* #param n the number of elements contained in the $coll.
* #param elem the element computation
* #return A $coll that contains the results of `n` evaluations of `elem`.
*/
def fill[A](n: Int)(elem: => A): CC[A] = {
val b = newBuilder[A]
b.sizeHint(n)
var i = 0
while (i < n) {
b += elem
i += 1
}
b.result
}
I changed a lot of variables forth and back (def x = ... => def x () = , x/ this.x and x/xPos and so on) added println statements and removed (P)applet-stuff, which made the compiler complain.
Providing a compilable, runnable, standalone demo would be beneficial. Here it is:
class Circle (x: Float, y: Float, subdivisions: Int, radius: Float)
extends WorldObject (x, y) {
def subs = subdivisions
def r = radius
val d = r + r
def makePoints() : List[Glyph] = {
// val step = PConstants.TWO_PI / subdivisions
val step = 6.283F / subdivisions
val points = List.fill (subdivisions) (new Glyph ())
for (i <- 0 to subdivisions - 1) {
// points (i) position (PApplet.cos (step * i) * r + xPos,
// PApplet.sin (step * i) * r + yPos)
val xx = (math.cos (step * i) * r).toFloat + xPos
val yy = (math.sin (step * i) * r).toFloat + yPos
println (xx + ": " + yy)
points (i) position (xx, yy)
}
points
}
val points: List [Glyph] = makePoints ()
override def draw () {
/*
applet fill 0
applet stroke 255
applet ellipse(x, y, d, d)
applet fill 255
*/
// println ("Circle:draw () upd-> " + super.x () + "\t" + y () + "\t" + d);
points map (_.update ())
println ("Circle:draw () <-upd " + x + "\t" + y + "\t" + d);
}
}
class Glyph (x: Float, y: Float) extends WorldObject (x, y) {
def this () = this (0, 0)
override def draw() {
// applet ellipse (xPos, yPos, 10, 10)
println ("Glyph:draw (): " + xPos + "\t" + yPos + "\t" + 10);
}
}
object Circle {
def main (as: Array [String]) : Unit = {
val c = new Circle (400, 300, 5, 100)
c.draw ()
}
}
object WorldObject {
}
abstract class WorldObject (var xPos: Float, var yPos: Float) {
def this () = this (0, 0)
def x = xPos
def y = yPos
def update () {
draw ()
}
def draw ()
def position (x: Float, y: Float) {
xPos = x
yPos = y
// println (x + " ?= " + xPos + " ?= " + (this.x ()))
}
def move (dx: Float, dy: Float) {
xPos += dx
yPos += dy
}
}
My result is:
500.0: 300.0
430.9052: 395.1045
319.10266: 358.78452
319.09177: 241.23045
430.8876: 204.88977
Glyph:draw (): 500.0 300.0 10
Glyph:draw (): 430.9052 395.1045 10
Glyph:draw (): 319.10266 358.78452 10
Glyph:draw (): 319.09177 241.23045 10
Glyph:draw (): 430.8876 204.88977 10
Circle:draw () <-upd 400.0 300.0 200.0
Can you spot the difference?
You should create a copy of your code, and stepwise remove code, which isn't necessary to reproduce the error, checking, whether the error is still present. Then you should reach a much smaller problem, or find the error yourself.