I understand that in Kotlin there is no such thing as "Non-local variables" or "Global Variables" I am looking for a way to modify variables in another "Scope" in Kotlin by using the function below:
class Listres(){
var listsize = 0
fun gatherlistresult(){
var listallinfo = FirebaseStorage.getInstance()
.getReference()
.child("MainTimeline/")
.listAll()
listallinfo.addOnSuccessListener {
listResult -> listsize += listResult.items.size
}
}
}
the value of listsize is always 0 (logging the result from inside of the .addOnSuccessListener scope returns 8) so clearly the listsize variable isn't being modified. I have seen many different posts about this topic on other sites , but none fit my usecase.
I simply want to modify listsize inside of the .addOnSuccessListener callback
This method will always be returned 0 as the addOnSuccessListener() listener will be invoked after the method execution completed. The addOnSuccessListener() is a callback method for asynchronous operation and you will get the value if it gives success only.
You can get the value by changing the code as below:
class Demo {
fun registerListResult() {
var listallinfo = FirebaseStorage.getInstance()
.getReference()
.child("MainTimeline/")
.listAll()
listallinfo.addOnSuccessListener {
listResult -> listsize += listResult.items.size
processResult(listsize)
}
listallinfo.addOnFailureListener {
// Uh-oh, an error occurred!
}
}
fun processResult(listsize: Int) {
print(listResult+"") // you will get the 8 here as you said
}
}
What you're looking for is a way to bridge some asynchronous processing into a synchronous context. If possible it's usually better (in my opinion) to stick to one model (sync or async) throughout your code base.
That being said, sometimes these circumstances are out of our control. One approach I've used in similar situations involves introducing a BlockingQueue as a data pipe to transfer data from the async context to the sync context. In your case, that might look something like this:
class Demo {
var listSize = 0
fun registerListResult() {
val listAll = FirebaseStorage.getInstance()
.getReference()
.child("MainTimeline/")
.listAll()
val dataQueue = ArrayBlockingQueue<Int>(1)
listAll.addOnSuccessListener { dataQueue.put(it.items.size) }
listSize = dataQueue.take()
}
}
The key points are:
there is a blocking variant of the Queue interface that will be used to pipe data from the async context (listener) into the sync context (calling code)
data is put() on the queue within the OnSuccessListener
the calling code invokes the queue's take() method, which will cause that thread to block until a value is available
If that doesn't work for you, hopefully it will at least inspire some new thoughts!
Related
Is this code thread safe? Do I need a synchronized block or something like that? source1 and source2 endless Kotlin Flow
viewModelScope.launch {
var listAll = mutableListOf<String>()
var list1 = mutableListOf<String>()
var list2 = mutableListOf<String>()
launch {
source1.getNames().collect { list ->
list1 = list
listAll = mutableListOf()
listAll.addAll(list1)
listAll.addAll(list2)
//then consume listAll as StateFlow or return another flow with emit(listAll)
}
}
launch {
source2.getNames().collect { list ->
list2 = list
listAll = mutableListOf()
listAll.addAll(list2)
listAll.addAll(list1)
//then consume listAll as StateFlow or return another flow with emit(listAll)
}
}
}
This code is not thread safe.
However, it is called from viewModelScope.launch which runs on Dispatchers.Main by default. So your inner launch blocks will be called sequentially. This means that after all you will get the result which is produced by second launch block.
To achieve asynchronous behavior, you want to use viewModelScope.launch(Dispatchers.Default).
Your code will probably fire concurrent modification exception in that case.
To synchronize it, you may want to use Java's Collections.synchronizedList which blocks the list while one thread is performing operations with it, so the other thread are not able to perform modifications.
Or perform synchronizing manually using Mutex.
val mutex = Mutex()
viewModelScope.launch(Dispatchers.Default) {
launch {
mutex.withLock {
... // Your code
}
}
launch {
mutex.withLock {
... // Your code
}
}
}
Read official Kotlin guide to shared mutable state
After all, I am struggling to imagine real life example in which you will actually use that code. You probably don't need asynchronous behavior, you will be fine without using two launch blocks. Or you should rethink your design to avoid need of manual synchronization of two coroutines.
At 'urichecking2' log, I can see there is value. But in 'uriChecking' the uriList is null.
why the uriList.add not work??
private fun getPhotoList() {
val fileName = intent.getStringExtra("fileName")
Log.d("fileNameChecking", "$fileName")
val listRef = FirebaseStorage.getInstance().reference.child("image").child(fileName!!)
var tmpUrl:Uri = Uri.parse(fileName)
Log.d("firstTmpUri","$tmpUrl")
listRef.listAll()
.addOnSuccessListener { listResult ->
for (item in listResult.items) {
item.downloadUrl.addOnCompleteListener { task ->
if (task.isSuccessful) {
tmpUrl = task.result
Log.d("secondTmpUri","$tmpUrl")
Log.d("urichecking2","$task.result")
uriList.add(task.result)
} else {
}
}.addOnFailureListener {
// Uh-oh, an error occurred!
}
}
}
Log.d("thirdTmpUri","$tmpUrl")
Log.d("urichecking", "$uriList")
}
If I do this, the log is output in the order of first, third, and second, and the desired value is in second, but when third comes out, it returns to the value of first.
The listAll method (like most cloud APIs these days, including downloadUrl which you also use) is asynchronous, since it needs to make a call to the server - which may take time. This means the code executes in a different order than you may expect, which is easiest to see if you add some logging:
Log.d("Firebase","Before starting listAll")
listRef.listAll()
.addOnSuccessListener { listResult ->
Log.d("Firebase","Got listResult")
}
Log.d("Firebase","After starting listAll")
When you run this code it outputs:
Before starting listAll
After starting listAll
Got listResult
This is probably not the order you expected, but it perfectly explains why you can't see the list result. By the time your Log.d("urichecking", "$uriList") runs, none of the uriList.add(task.result) has been called yet.
The solution for this is always the same: any code that needs the list result, has to be inside the addOnCompleteListener callback, be called from there, or be otherwise synchronized.
So in its simplest way:
listRef.listAll()
.addOnSuccessListener { listResult ->
for (item in listResult.items) {
item.downloadUrl.addOnCompleteListener { task ->
if (task.isSuccessful) {
uriList.add(task.result)
Log.d("urichecking", "$uriList")
}
}
}
}
This is an incredibly common mistake to make if you're new to programming with asynchronous APIs, so I recommend checking out
Asynchronous programming techniques in the Kotlin language guide
How to get URL from Firebase Storage getDownloadURL
Can someone help me with logic of the firebase on success listener
Why does my function that calls an API or launches a coroutine return an empty or null value?
I am trying to get the size of this firebase collection size of documents, and for some reason in Kotlin, I can't seem to get this to work. I have declared a variable to be zero in an int function and I put it inside a for loop where it increments to the size of the range. Then when I return the value, it is zero. Here is the code I have provided, please help me as to why it is returning zero.
This is just what is being passed to the function
var postSize = 0
That is the global variable, now for below
val db = FirebaseFirestore.getInstance()
val first = db.collection("Post").orderBy("timestamp")
getPostSize(first)
This is the function
private fun getPostSize(first: Query){
first.get().addOnSuccessListener { documents ->
for(document in documents) {
Log.d(TAG, "${document.id} => ${document.data}")
getActualPostSize(postSize++)
}
}
return postSize
}
private fun getActualPostSize(sizeOfPost: Int): Int {
// The number does push to what I am expecting right here if I called a print statement
return sizeOfPost // However here it just returns it to be zero again. Why #tenffour04? Why?
}
It is my understanding, according to the other question that this was linked to, that I was suppose to do something like this.
This question has answers that explain how to approach getting results from asynchronous APIs, like you're trying to do.
Here is a more detailed explanation using your specific example since you were having trouble adapting the answer from there.
Suppose this is your original code you were trying to make work:
// In your "calling code" (inside onCreate() or some click listener):
val db = FirebaseFirestore.getInstance()
val first = db.collection("Post").orderBy("timestamp")
val postSize = getPostSize(first)
// do something with postSize
// Elsewhere in your class:
private fun getPostSize(first: Query): Int {
var postSize = 0
first.get().addOnSuccessListener { documents ->
for(document in documents) {
Log.d(TAG, "${document.id} => ${document.data}")
postSize++
}
}
return postSize
}
The reason this doesn't work is that the code inside your addOnSuccessListener is called some time in the future, after getPostSize() has already returned.
The reason asynchronous code is called in the future is because it takes a long time to do its action, but it's bad to wait for it on the calling thread because it will freeze your UI and make the whole phone unresponsive. So the time-consuming action is done in the background on another thread, which allows the calling code to continue doing what it's doing and finish immediately so it doesn't freeze the UI. When the time-consuming action is finally finished, only then is its callback/lambda code executed.
A simple retrieval from Firebase like this likely takes less than half a second, but this is still too much time to freeze the UI, because it would make the phone seem janky. Half a second in the future is still in the future compared to the code that is called underneath and outside the lambda.
For the sake of simplifying the below examples, let's simplify your original function to avoid using the for loop, since it was unnecessary:
private fun getPostSize(first: Query): Int {
var postSize = 0
first.get().addOnSuccessListener { documents ->
postSize = documents.count()
}
return postSize
}
The following are multiple distinct approaches for working with asynchronous code. You only have to pick one. You don't have to do all of them.
1. Make your function take a callback instead of returning a value.
Change you function into a higher order function. Since the function doesn't directly return the post size, it is a good convention to put "Async" in the function name. What this function does now is call the callback to pass it the value you wanted to retrieve. It will be called in the future when the listener has been called.
private fun getPostSizeAsync(first: Query, callback: (Int) -> Unit) {
first.get().addOnSuccessListener { documents ->
val postSize = documents.count()
callback(postSize)
}
}
Then to use your function in your "calling code", you must use the retrieved value inside the callback, which can be defined using a lambda:
// In your "calling code" (inside onCreate() or some click listener):
val db = FirebaseFirestore.getInstance()
val first = db.collection("Post").orderBy("timestamp")
getPostSizeAsync(first) { postSize ->
// do something with postSize inside the lambda here
}
// Don't try to do something with postSize after the lambda here. Code under
// here is called before the code inside the lambda because the lambda is called
// some time in the future.
2. Handle the response directly in the calling code.
You might have noticed in the above solution 1, you are really just creating an intermediate callback step, because you already have to deal with the callback lambda passed to addOnSuccessListener. You could eliminate the getPostSize function completely and just deal with callbacks at once place in your code. I wouldn't normally recommend this because it violates the DRY principle and the principle of avoiding dealing with multiple levels of abstraction in a single function. However, it may be better to start this way until you better grasp the concept of asynchronous code.
It would look like this:
// In your "calling code" (inside onCreate() or some click listener):
val db = FirebaseFirestore.getInstance()
val first = db.collection("Post").orderBy("timestamp")
first.get().addOnSuccessListener { documents ->
val postSize = documents.count()
// do something with postSize inside the lambda here
}
// Don't try to do something with postSize after the lambda here. Code under
// here is called before the code inside the lambda because the lambda is called
// some time in the future.
3. Put the result in a LiveData. Observe the LiveData separately.
You can create a LiveData that will update its observers about results when it gets them. This may not be a good fit for certain situations, because it would get really complicated if you had to turn observers on and off for your particular logic flow. I think it is probably a bad solution for your code because you might have different queries you want to pass to this function, so it wouldn't really make sense to have it keep publishing its results to the same LiveData, because the observers wouldn't know which query the latest postSize is related to.
But here is how it could be done.
private val postSizeLiveData = MutableLiveData<Int>()
// Function name changed "get" to "fetch" to reflect it doesn't return
// anything but simply initiates a fetch operation:
private fun fetchPostSize(query: Query) {
first.get().addOnSuccessListener { documents ->
postSize.value = documents.count()
}
}
// In your "calling code" (inside onCreate() or some click listener):
val db = FirebaseFirestore.getInstance()
val first = db.collection("Post").orderBy("timestamp")
fetchPostSize(first)
postSizeLiveData.observer(this) { postSize ->
// Do something with postSize inside this observer that will
// be called some time in the future.
}
// Don't try to do something with postSize after the lambda here. Code under
// here is called before the code inside the lambda because the lambda is called
// some time in the future.
4. Use a suspend function and coroutine.
Coroutines allow you to write synchronous code without blocking the calling thread. After you learn to use coroutines, they lead to simpler code because there's less nesting of asynchronous callback lambdas. If you look at option 1, it will become very complicated if you need to call more than one asynchronous function in a row to get the results you want, for example if you needed to use postSize to decide what to retrieve from Firebase next. You would have to call another callback-based higher-order function inside the lambda of your first higher-order function call, nesting the future code inside other future code. (This is nicknamed "callback hell".) To write a synchronous coroutine, you launch a coroutine from lifecycleScope (or viewLifecycleOwner.lifecycleScope in a Fragment or viewModelScope in a ViewModel). You can convert your getter function into a suspend function to allow it to be used synchronously without a callback when called from a coroutine. Firebase provides an await() suspend function that can be used to wait for the result synchronously if you're in a coroutine. (Note that more properly, you should use try/catch when you call await() because it's possible Firebase fails to retrieve the documents. But I skipped that for simplicity since you weren't bothering to handle the possible failure with an error listener in your original code.)
private suspend fun getPostSize(first: Query): Int {
return first.get().await().count()
}
// In your "calling code" (inside onCreate() or some click listener):
lifecycleScope.launch {
val db = FirebaseFirestore.getInstance()
val first = db.collection("Post").orderBy("timestamp")
val postSize = getPostSize(first)
// do something with postSize
}
// Code under here will run before the coroutine finishes so
// typically, you launch coroutines and do all your work inside them.
Coroutines are the common way to do this in Kotlin, but they are a complex topic to learn for a newcomer. I recommend you start with one of the first two solutions until you are much more comfortable with Kotlin and higher order functions.
I have read the set-based consistency validation blog and I want to validate through a dispatch interceptor. I follow the example, but I use reactive repository and it doesn't really work for me. I have tried both block and not block. with block it throws error, but without block it doesn't execute anything. here is my code.
class SubnetCommandInterceptor : MessageDispatchInterceptor<CommandMessage<*>> {
#Autowired
private lateinit var privateNetworkRepository: PrivateNetworkRepository
override fun handle(messages: List<CommandMessage<*>?>): BiFunction<Int, CommandMessage<*>, CommandMessage<*>> {
return BiFunction<Int, CommandMessage<*>, CommandMessage<*>> { index: Int?, command: CommandMessage<*> ->
if (CreateSubnetCommand::class.simpleName == (command.payloadType.simpleName)){
val interceptCommand = command.payload as CreateSubnetCommand
privateNetworkRepository
.findById(interceptCommand.privateNetworkId)
// ..some validation logic here ex.
// .filter { network -> network.isSubnetOverlap() }
.switchIfEmpty(Mono.error(IllegalArgumentException("Requested subnet is overlap with the previous subnet.")))
// .block() also doesn't work here it throws error
// block()/blockFirst()/blockLast() are blocking, which is not supported in thread reactor-
}
command
}
}
}
Subscribing to a reactive repository inside a message dispatcher is not really recommended and might lead to weird behavior as underling ThreadLocal (used by Axox) is not adapted to be used in reactive programing
Instead, check out Axon's Reactive Extension and reactive interceptors section.
For example what you might do:
reactiveCommandGateway.registerDispatchInterceptor(
cmdMono -> cmdMono.flatMap(cmd->privateNetworkRepository
.findById(cmd.privateNetworkId))
.switchIfEmpty(
Mono.error(IllegalArgumentException("Requested subnet is overlap with the previous subnet."))
.then(cmdMono)));
I am trying to make a class that would take incoming user events, process them and then pass the result to whoever subscribed to it:
class EventProcessor
{
val flux: Flux<Result>
fun onUserEvent1(e : Event)
{
val result = process(e)
// Notify flux that I have a new result
}
fun onUserEvent2(e : Event)
{
val result = process(e)
// Notify flux that I have a new result
}
fun process(e : Event): Result
{
...
}
}
Then the client code can subscribe to EventProcessor::flux and get notified each time a user event has been successfully processed.
However, I do not know how to do this. I tried to construct the flux with the Flux::generate function like this:
class EventProcessor
{
private var sink: SynchronousSink<Result>? = null
val flux: Flux<Result> = Flux.generate{ sink = it }
fun onUserEvent1(e : Event)
{
val result = process(e)
sink?.next(result)
}
fun onUserEvent2(e : Event)
{
val result = process(e)
sink?.next(result)
}
....
}
But this does not work, since I am supposed to immediately call next on the SynchronousSink<Result> passed to me in Flux::generate. I cannot store the sink as in the example:
reactor.core.Exceptions$ErrorCallbackNotImplemented:
java.lang.IllegalStateException: The generator didn't call any of the
SynchronousSink method
I was also thinking about the Flux::merge and Flux::concat methods, but these are static and they create a new Flux. I just want to push things into the existing flux, such that whoever holds it, gets notified.
Based on my limited understanding of the reactive types, this is supposed to be a common use case. Yet I find it very difficult to actually implement it. This brings me to a suspicion that I am missing something crucial or that I am using the library in an odd way, in which it was not intended to be used. If this is the case, any advice is warmly welcome.