Let's say I have an array that looks like this:
a = np.array([0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0])
I want to fill the values that are between 1's with 1's.
So this would be the desired output:
a = np.array([0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0])
I have taken a look into this answer, which yields the following:
array([0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1])
I am sure this answer is really close to the output I want. However, although tried countless times, I can't change this code into making it work the way I want, as I am not that proficient with numpy arrays.
Any help is much appreciated!
Try this
b = ((a == 1).cumsum() % 2) | a
Out[10]:
array([0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0], dtype=int32)
From #Paul Panzer: use ufunc.accumulate with bitwise_xor
b = np.bitwise_xor.accumulate(a)|a
Try this:
import numpy as np
num_lst = np.array(
[0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0])
i = 0
while i < len(num_lst): # Iterate through the list
if num_lst[i]: # Check if element is 1 at i-th position
if not num_lst[i+1]: # Check if next element is 0
num_lst[i+1] = 1 # Change next element to 1
i += 1 # Continue through loop
else: # Check if next element is 1
i += 2 # Skip next element
else:
i += 1 # Continue through loop
print(num_lst)
This is probably not the most elegant way to execute this, but it should work. Basically, we loop through the list to find any 1s. When we find an element that is 1, we check if the next element is 0. If it is, then we change the next element to 1. If the next element is 1, that means we should stop changing 0s to 1s, so we jump over that element and proceed with the iteration.
I am trying to compute matrix z (defined below) in python with numpy.
Here's my current solution (using 1 for loop)
z = np.zeros((n, k))
for i in range(n):
v = pi * (1 / math.factorial(x[i])) * np.exp(-1 * lamb) * (lamb ** x[i])
numerator = np.sum(v)
c = v / numerator
z[i, :] = c
return z
Is it possible to completely vectorize this computation? I need to do this computation for thousands of iterations, and matrix operations in numpy is much faster than huge for loops.
Here is a vectorized version of E. It replaces the for-loop and scalar arithmetic with NumPy broadcasting and array-based arithmetic:
def alt_E(x):
x = x[:, None]
z = pi * (np.exp(-lamb) * (lamb**x)) / special.factorial(x)
denom = z.sum(axis=1)[:, None]
z /= denom
return z
I ran em.py to get a sense for the typical size of x, lamb, pi, n and k. On data of this size,
alt_E is about 120x faster than E:
In [32]: %timeit E(x)
100 loops, best of 3: 11.5 ms per loop
In [33]: %timeit alt_E(x)
10000 loops, best of 3: 94.7 µs per loop
In [34]: 11500/94.7
Out[34]: 121.43611404435057
This is the setup I used for the benchmark:
import math
import numpy as np
import scipy.special as special
def alt_E(x):
x = x[:, None]
z = pi * (np.exp(-lamb) * (lamb**x)) / special.factorial(x)
denom = z.sum(axis=1)[:, None]
z /= denom
return z
def E(x):
z = np.zeros((n, k))
for i in range(n):
v = pi * (1 / math.factorial(x[i])) * \
np.exp(-1 * lamb) * (lamb ** x[i])
numerator = np.sum(v)
c = v / numerator
z[i, :] = c
return z
n = 576
k = 2
x = np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5])
lamb = np.array([ 0.84835141, 1.04025989])
pi = np.array([ 0.5806958, 0.4193042])
assert np.allclose(alt_E(x), E(x))
By the way, E could also be calculated using scipy.stats.poisson:
import scipy.stats as stats
pois = stats.poisson(mu=lamb)
def alt_E2(x):
z = pi * pois.pmf(x[:,None])
denom = z.sum(axis=1)[:, None]
z /= denom
return z
but this does not turn out to be faster, at least for arrays of this length:
In [33]: %timeit alt_E(x)
10000 loops, best of 3: 94.7 µs per loop
In [102]: %timeit alt_E2(x)
1000 loops, best of 3: 278 µs per loop
For larger x, alt_E2 is faster:
In [104]: x = np.random.random(10000)
In [106]: %timeit alt_E(x)
100 loops, best of 3: 2.18 ms per loop
In [105]: %timeit alt_E2(x)
1000 loops, best of 3: 643 µs per loop
I am trying to figure out how to do this transformation symbolically in theano a matrix of undetermined size
From:
[[0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1],
.
.
]
To:
[[1, 2, 3, 0, 1, 2, 3, 4, 5, 0, 0, 1, 0, 1, 2, 3, 0],
[1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 0, 0, 0, 0, 0, 0],
.
.
]
So for every consecutive 0 I want an increasing range and whenever I stumble on a 1 the range resets.
Here's one way to do it, using inefficient scans:
import theano
import theano.tensor as tt
def inner_step(x_t_t, y_t_tm1):
return tt.switch(x_t_t, 0, y_t_tm1 + 1)
def outer_step(x_t):
return theano.scan(inner_step, sequences=[x_t], outputs_info=[0])[0]
def compile():
x = tt.bmatrix()
y = theano.scan(outer_step, sequences=[x])[0]
return theano.function([x], y)
def main():
f = compile()
data = [[0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1]]
print f(data)
main()
When run, this prints:
[[1 2 3 0 1 2 3 4 5 0 0 1 0 1 2 3 0]
[1 2 3 4 5 6 7 8 0 1 2 0 0 0 0 0 0]]