How to access tensor shape inside map function - tensorflow

I need to access image shapes to perform an augmentation pipeline although when accessing through image.shape[0] and image.shape[1] I'm unable to perform the augmentations since it outputs that my tensors have shape None.
Related issues: How to access Tensor shape in .map?
Appreciate if anyone could help.
parsed_dataset = tf.data.TFRecordDataset(filenames=train_records_paths).map(parsing_fn) # Returns [image,label]
augmented_dataset = parsed_dataset.map(augment_pipeline)
augmented_dataset = augmented_dataset.unbatch()
Mapped function
"""
Returns:
5 Versions of the original image: 4 corner crops + a central crop and the respective labels.
"""
def augment_pipeline(original_image,label):
central_crop = lambda image: tf.image.central_crop(image,0.5)
corner_crops = lambda image: tf.image.extract_patches(images=tf.expand_dims(image,0), # Transform image in a batch of single sample
sizes=[1, int(0.5 * image.shape[0]), int(0.5 * image.shape[1]), 1], # 50% of the image's height and width
rates=[1, 1, 1, 1],
strides=[1, int(0.5 * image.shape[0]), int(0.5 * image.shape[1]), 1],
padding="SAME")
reshaped_patches = tf.reshape(corner_crops(original_image), [-1,int(0.5*original_image.shape[0]),int(0.5*original_image.shape[1]),3])
images = tf.concat([reshaped_patches,tf.expand_dims(central_crop(original_image),axis=0)],axis=0)
label = tf.reshape(label,[1,1])
labels = tf.tile(label,[5,1])
return images,labels

After further research i was able to manage by using py_func as suggested here and tf.shape(image)[0] here.
Code:
"""
Returns:
5 Versions of the original image: 4 corner crops + a central crop and the respective labels.
"""
def augment_pipeline(original_image,label):
height = int(tf.shape(original_image)[0].numpy() * 0.5) # 50% of the image's height and width
width = int(tf.shape(original_image)[1].numpy() * 0.5)
central_crop = lambda image: tf.image.central_crop(image,0.5)
corner_crops = lambda image: tf.image.extract_patches(images=tf.expand_dims(image,0), # Transform image in a batch of single sample
sizes=[1, height, width, 1],
rates=[1, 1, 1, 1],
strides=[1, height, width, 1],
padding="SAME")
.
.
.
Then we use py_func to allow accessing numpy values inside map function:
parsed_dataset = tf.data.TFRecordDataset(filenames=train_records_paths).map(parsing_fn) # Returns [image,label]
augmented_dataset = parsed_dataset.map(lambda image,label: tf.py_function(func=augment_pipeline,
inp=[image,label],
Tout=[tf.float32,tf.int64]))
augmented_dataset = augmented_dataset.unbatch()

Every Dataset object is iterable. Now the Dataset object can either be in the batched form or the unbatched form. I will tell you how to get their elements shapes in both the cases.
Case 1. Dataset object is in unbatched form.
Method 1. Consuming its elements using iter
it = iter(dataset)
element = next(it)
image,label = element
## element is a tuple
Method 2. using take
element = dataset.take(1)
image,label = element
# element is a tuple
Case 2. When the dataset is batched. Now I assume that the dataset contains (image,label) tuples
Method 1. Using iter
it = iter(dataset)
batch = next(it)
images,labels = batch
## batch is a tuple check it using type(batch)
Method 2. Using take
batch = dataset.take(1)
## Note here each element of the dataset is a batch and each batch contains some number of
## (image,label) tuples
batch = next(iter(batch))
images,labels = batch
## batch is again a tuple

Related

How to get top k predictions for a new Image

I am using this function to predict the output of never seen images
def predictor(img, model):
image = cv2.imread(img)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = cv2.resize(image, (224, 224))
image = np.array(image, dtype = 'float32')/255.0
plt.imshow(image)
image = image.reshape(1, 224,224,3)
clas = model.predict(image).argmax()
name = dict_class[clas]
print('The given image is of \nClass: {0} \nSpecies: {1}'.format(clas, name))
how to change it, if I want the top 2(or k) accuracy
i.e
70% chance its dog
15% its a bear
If you are using TensorFlow + Keras and probably doing multi-class classification, then the output of model.predict() is a tensor representing either the logits or already the probabilities (softmax on top of logits).
I am taking this example from here and slightly modifying it : https://www.tensorflow.org/api_docs/python/tf/math/top_k.
#See the softmax, probabilities add up to 1
network_predictions = [0.7,0.2,0.05,0.05]
prediction_probabilities = tf.math.top_k(network_predictions, k=2)
top_2_scores = prediction_probabilities.values.numpy()
dict_class_entries = prediction_probabilities.indices.numpy()
And here in dict_class_entries you have then the indices (sorted ascendingly) in accordance with the probabilities. (i.e. dict_class_entries[0] = 0 (corresponds to 0.7) and top_2_scores[0] = 0.7 etc.).
You just need to replace network_probabilities with model.predict(image).
Notice I removed the argmax() in order to send an array of probabilities instead of the index of the max score/probability position (that is, argmax()).

Tensorflow 2.3 pipeline load all the data to the RAM

I created pipeline using tf.data API, for reading data set of images. I have a big dataset with high resolution. However, each time trying to reading all the dataset, the computer crash because the code using all the RAM. I tested the code with about 1280 images, it works without any error. But when I used all the datasets the model craches.
So, I am wondering if there is a way to make tf.data read a one or two batch in front not more than that.
This the code I am using to create the pipeline:
def decode_img(self, img):
img = tf.image.convert_image_dtype(img, tf.float32, saturate=False)
img = tf.image.resize(img, size=self.input_dim, antialias=False, name=None)
return img
def get_label(self, label):
y = np.zeros(self.n_class, dtype=np.float32)
y[label] = 1
return y
def process_path(self, file_path, label):
label = self.get_label(label)
img = Image.open(file_path)
width, height = img.size
# Setting the points for cropped image
new_hight = height // 2
new_width = width // 2
newsize = (new_width, new_hight)
img = img.resize(newsize)
if self.aug_img:
img = self.policy(img)
img = self.decode_img(np.array(img, dtype=np.float32))
return img, label
def create_pip_line(self):
def _fixup_shape(images, labels):
images.set_shape([None, None, 3])
labels.set_shape([7]) # I have 19 classes
return images, labels
tf_ds = tf.data.Dataset.from_tensor_slices((self.df["file_path"].values, self.df["class_num"].values))
tf_ds = tf_ds.map(lambda img, label: tf.numpy_function(self.process_path,
[img, label],
(tf.float32, tf.float32)),
num_parallel_calls=tf.data.experimental.AUTOTUNE)
tf_ds = tf_ds.map(_fixup_shape)
if not self.is_val:
tf_ds = tf_ds.shuffle(len(self.df), reshuffle_each_iteration=True)
tf_ds = tf_ds.batch(self.batch_size).repeat(self.epoch_num)
self.tf_ds = tf_ds.prefetch(tf.data.experimental.AUTOTUNE)
The main issue in my code was the Shuffle function. This function takes two parameters, the first one number of data to shuffle, the second one the repeat for each epoch.
However, I found the number of data that will be loaded to the memory depends on this function. Therefore, I reduced the number from all data to 100 and this makes the pipeline load 100 images and shuffles them then load another 100, and so on.
if not self.is_val:
tf_ds = tf_ds.shuffle(100, reshuffle_each_iteration=True)

preprocess images with tf.data.experimental.make_csv_dataset or with read_csv option

I am adding this summarization of my issue to make it easier to understand:
I want to do exactly what is done in the following tensorflow example:
https://www.tensorflow.org/guide/datasets
# Reads an image from a file, decodes it into a dense tensor, and resizes it
# to a fixed shape.
def _parse_function(filename, label):
image_string = tf.read_file(filename)
image_decoded = tf.image.decode_jpeg(image_string)
image_resized = tf.image.resize_images(image_decoded, [28, 28])
return image_resized, label
# A vector of filenames.
filenames = tf.constant(["/var/data/image1.jpg", "/var/data/image2.jpg", ...])
# `labels[i]` is the label for the image in `filenames[i].
labels = tf.constant([0, 37, ...])
dataset = tf.data.Dataset.from_tensor_slices((filenames, labels))
dataset = dataset.map(_parse_function)
The only differences are: I read the data from CSV that has many more features and then I call the map method:
dataset = tf.data.experimental.make_csv_dataset(file_pattern=CSV_PATH_TRAIN,
batch_size=2,
header=True,
label_name = 'label').map(_parse_function)
How does my _parse_function need to look like? How do I access the image path features, updates it to be an image presentation and return a modified numeric matrix feature of the image without changing anything at the other features?
thanks,
eilalan
==================Here are my code tries:==================
My code reads a CSV with feature columns and label. One of the features is image path, the others are strings.
The image path need to be processed into image numbers matrix.
I have tried doing so with the following options. In both ways tf.read_file fails with the input dimension error.
My question is how to pass one image at a time into the map methods
def read_image_png_option_1(image_path, depth=3, scale=False):
"""Reads the image from image_path (tf.string tensor) [jpg image].
Cast the result to float32 and if scale=True scale it in [-1,1]
using scale_image. Otherwise the values are in [0,1]
Reuturn:
the decoded jpeg image, casted to float32
"""
image = tf.image.convert_image_dtype(
tf.image.decode_png(tf.read_file(image_path), channels=depth),
dtype=tf.float32)
if scale:
image = scale_image(image)
return image
def read_image_png_option_2(features, depth=3, scale=False):
"""Reads the image from image_path (tf.string tensor) [jpg image].
Cast the result to float32 and if scale=True scale it in [-1,1]
using scale_image. Otherwise the values are in [0,1]
Reuturn:
the decoded jpeg image, casted to float32
"""
image = tf.image.convert_image_dtype(
tf.image.decode_png(tf.read_file(features['image']), channels=depth),
dtype=tf.float32)
if scale:
image = scale_image(image)
features['image'] = image
return features
def make_input_fn(fileName,batch_size=8, perform_shuffle=True):
"""An input function for training """
def _input_fn():
def decode_csv(line):
print('line is ',line)
filename_col,label_col,gender_col,ethinicity = tf.decode_csv(line,
[[""]]*amount_of_columns_csv,
field_delim=",",
na_value='NA',
select_cols=None)
image_col = read_image_png_option_1(filename_col)
d = dict(zip(['image','label','gender','ethinicity'], [image_col,label_col,gender_col,ethinicity])), label
return d
## OPTION 1:
# filenames could be more than one
# dataset = tf.data.TextLineDataset(filenames=fileName).skip(1).batch(batch_size).map(decode_csv)
## OPTION 2:
dataset = tf.data.experimental.make_csv_dataset(file_pattern=CSV_PATH_TRAIN,
batch_size=2,
header=True,
label_name = 'label').map(read_image_png_option_2)
#select_columns=[0,1]) #[tf.string,tf.string,tf.string,tf.string])
if perform_shuffle:
dataset = dataset.shuffle(buffer_size=256)
return dataset
return _input_fn()
train_input_fn = lambda: make_input_fn(CSV_PATH_TRAIN)
train_spec = tf.estimator.TrainSpec(input_fn=train_input_fn, max_steps=50)
eval_input_fn = lambda: make_input_fn(CSV_PATH_VAL)
eval_spec = tf.estimator.EvalSpec(eval_input_fn)
feature_columns = [tf.feature_column.numeric_column("image",shape=(224,224)), # here i need a pyhton method to transform
tf.feature_column.categorical_column_with_vocabulary_list("gender", ["ww","ee"]),
tf.feature_column.categorical_column_with_vocabulary_list("ethinicity",["xx","yy"])]
estimator = tf.estimator.DNNClassifier(feature_columns=feature_columns,hidden_units=[1024, 512, 256],warm_start_from=ws)
tf.estimator.train_and_evaluate(estimator, train_spec=train_spec, eval_spec=eval_spec)
Error for option 2:
ValueError: Shape must be rank 0 but is rank 1 for 'ReadFile' (op: 'ReadFile') with input shapes: [2].
Error for option 1:
ValueError: Shape must be rank 0 but is rank 1 for 'ReadFile' (op: 'ReadFile') with input shapes: [?].
Any help is appreciated.
Thanks
First you need to read the CSV file into dataset.
Then for each row in your CSV you can call your parse function.
def getInput(fileList):
# returns a dataset containing list of filenames
files = tf.data.Dataset.from_tensor_slices(fileList)
# Returs a dataset containing list of rows taken from all the files in file list.
# dataset is filled dynamically and not all entries are read at once
dataset = files.interleave(tf.data.TextLineDataset)
# call parse function for each row
# returned dataset will contain list of whatever the parse function is returning for the row
# we want the image path to be converted to decoded image in parse function
dataset = dataset.map(_parse_function, num_parallel_calls=8)
# return an iterator for the dataset which will be used to get elements.
return dataset.make_one_shot_iterator().get_next()
The parse function will be passed only one parameter that will be a single row from the CSV file. You need to decode the CSV and do further processing on each value.
Let's say you have 3 columns in your CSV each being a string.
def _parse_function(value):
columns_default = [[""], [""], [""]]
# this will be a tensor of columns in the row
columns = tf.decode_csv(value, record_defaults=columns_default,
field_delim=',')
col_names = ["label", "imagepath", "c3"]
features = dict(zip(col_names, columns))
for f, tensor in features.items():
# process imagepath to decoded image
if f == "imagepath":
image_string = tf.read_file(tensor)
image_decoded = tf.image.decode_jpeg(image_string)
image_resized = tf.image.resize_images(image_decoded, [28, 28])
features[f] = image_resized
labels = tf.equal(features.pop('label'), "1")
labels = tf.expand_dims(labels, 0)
return features, labels
Edit:
Explanation for comment:
Dataset object simply contains a list of elements. The elements can be tensors or a tuple of tensors etc. Tensor object can contain anything. It could represent a single feature, a single record or a batch of record. Further dataset API provide handy methods to manipulate the elements within.
If you are using dataset with another API like estimator then they expect the dataset elements to be in specific format which is what need to return from our input function for eg.
https://www.tensorflow.org/api_docs/python/tf/estimator/Estimator#train
I have edited my code block above to describe what dataset object at each step will contain.
From what I understand is that you have image path as one of the field in your CSV and you want to convert that path into an actual decoded image which you will use as one of the feature.
Since the image is going to be just one of the feature, you should not try to create a dataset using image files alone. Dataset object will include all your features at once.
So doing this would be incorrect:
files = tf.data.Dataset.from_tensor_slices(ds['imagepath'])
dataset = files.interleave(tf.data.TextLineDataset)
If you are using make_csv() function to read your csv then it will convert each row of your csv into one record where one record will contain list of all features, same as columns of csv.
So each element in the returned dataset should contain a single tensor containing all your features.
Here your image path will be one of the features. now you want to transform that image path to decoded image.
I suppose you can do it by applying a parse function to elements of dataset using map() function but it will be slightly tricky as all your features are already packed inside a single tensor.

Tensorflow meets an error when rotating images

I want to implement data argumentation by rotating images in Tensorflow. After searching the relative material in the stack overflow, one better answer is found according to zimmermc.
def rotate_image_tensor(image, angle, mode='black'):
"""
Rotates a 3D tensor (HWD), which represents an image by given radian angle.
New image has the same size as the input image.
mode controls what happens to border pixels.
mode = 'black' results in black bars (value 0 in unknown areas)
mode = 'white' results in value 255 in unknown areas
mode = 'ones' results in value 1 in unknown areas
mode = 'repeat' keeps repeating the closest pixel known
"""
s = image.get_shape().as_list()
assert len(s) == 3, "Input needs to be 3D."
assert (mode == 'repeat') or (mode == 'black') or (mode == 'white') or (mode == 'ones'), "Unknown boundary mode."
image_center = [np.floor(x/2) for x in s]
# Coordinates of new image
coord1 = tf.range(s[0])
coord2 = tf.range(s[1])
# Create vectors of those coordinates in order to vectorize the image
coord1_vec = tf.tile(coord1, [s[1]])
coord2_vec_unordered = tf.tile(coord2, [s[0]])
coord2_vec_unordered = tf.reshape(coord2_vec_unordered, [s[0], s[1]])
coord2_vec = tf.reshape(tf.transpose(coord2_vec_unordered, [1, 0]), [-1])
# center coordinates since rotation center is supposed to be in the image center
coord1_vec_centered = coord1_vec - image_center[0]
coord2_vec_centered = coord2_vec - image_center[1]
coord_new_centered = tf.cast(tf.pack([coord1_vec_centered, coord2_vec_centered]), tf.float32)
# Perform backward transformation of the image coordinates
rot_mat_inv = tf.dynamic_stitch([[0], [1], [2], [3]], [tf.cos(angle), tf.sin(angle), -tf.sin(angle), tf.cos(angle)])
rot_mat_inv = tf.reshape(rot_mat_inv, shape=[2, 2])
coord_old_centered = tf.matmul(rot_mat_inv, coord_new_centered)
# Find nearest neighbor in old image
coord1_old_nn = tf.cast(tf.round(coord_old_centered[0, :] + image_center[0]), tf.int32)
coord2_old_nn = tf.cast(tf.round(coord_old_centered[1, :] + image_center[1]), tf.int32)
# Clip values to stay inside image coordinates
if mode == 'repeat':
coord_old1_clipped = tf.minimum(tf.maximum(coord1_old_nn, 0), s[0]-1)
coord_old2_clipped = tf.minimum(tf.maximum(coord2_old_nn, 0), s[1]-1)
else:
outside_ind1 = tf.logical_or(tf.greater(coord1_old_nn, s[0]-1), tf.less(coord1_old_nn, 0))
outside_ind2 = tf.logical_or(tf.greater(coord2_old_nn, s[1]-1), tf.less(coord2_old_nn, 0))
outside_ind = tf.logical_or(outside_ind1, outside_ind2)
coord_old1_clipped = tf.boolean_mask(coord1_old_nn, tf.logical_not(outside_ind))
coord_old2_clipped = tf.boolean_mask(coord2_old_nn, tf.logical_not(outside_ind))
coord1_vec = tf.boolean_mask(coord1_vec, tf.logical_not(outside_ind))
coord2_vec = tf.boolean_mask(coord2_vec, tf.logical_not(outside_ind))
coord_old_clipped = tf.cast(tf.transpose(tf.pack([coord_old1_clipped, coord_old2_clipped]), [1, 0]), tf.int32)
# Coordinates of the new image
coord_new = tf.transpose(tf.cast(tf.pack([coord1_vec, coord2_vec]), tf.int32), [1, 0])
image_channel_list = tf.split(2, s[2], image)
image_rotated_channel_list = list()
for image_channel in image_channel_list:
image_chan_new_values = tf.gather_nd(tf.squeeze(image_channel), coord_old_clipped)
if (mode == 'black') or (mode == 'repeat'):
background_color = 0
elif mode == 'ones':
background_color = 1
elif mode == 'white':
background_color = 255
image_rotated_channel_list.append(tf.sparse_to_dense(coord_new, [s[0], s[1]], image_chan_new_values,
background_color, validate_indices=False))
image_rotated = tf.transpose(tf.pack(image_rotated_channel_list), [1, 2, 0])
return image_rotated
when implementing the above codes, I meet an error as follow.
How to solve it? Thanks very much!
image_center = [np.floor(x/2) for x in s] TypeError: unsupported operand type(s) for /: 'NoneType' and 'int'
I feed data to the graph by use of input pipeline method. When debuging the codes, s = [None, None, 3]. The url of the source code is tensorflow: how to rotate an image for data augmentation?
Your input image is most likely a tf.placeholder with variable dimensions.
For example, an image with undefined height:
image = tf.placeholder(tf.float32, shape=[None, 365, 3])
When you evaluate your graph, you can get the actual dimensions:
s = tf.shape(image) # Returns a Tensor, not a list
image_center = tf.floor(s / 2)
You can't use numpy, as this calculation needs to occur as part of the Graph.
As an aside, you should use tf.contrib.image.rotate now.

Visualizing output of convolutional layer in tensorflow

I'm trying to visualize the output of a convolutional layer in tensorflow using the function tf.image_summary. I'm already using it successfully in other instances (e. g. visualizing the input image), but have some difficulties reshaping the output here correctly. I have the following conv layer:
img_size = 256
x_image = tf.reshape(x, [-1,img_size, img_size,1], "sketch_image")
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
So the output of h_conv1 would have the shape [-1, img_size, img_size, 32]. Just using tf.image_summary("first_conv", tf.reshape(h_conv1, [-1, img_size, img_size, 1])) Doesn't account for the 32 different kernels, so I'm basically slicing through different feature maps here.
How can I reshape them correctly? Or is there another helper function I could use for including this output in the summary?
I don't know of a helper function but if you want to see all the filters you can pack them into one image with some fancy uses of tf.transpose.
So if you have a tensor that's images x ix x iy x channels
>>> V = tf.Variable()
>>> print V.get_shape()
TensorShape([Dimension(-1), Dimension(256), Dimension(256), Dimension(32)])
So in this example ix = 256, iy=256, channels=32
first slice off 1 image, and remove the image dimension
V = tf.slice(V,(0,0,0,0),(1,-1,-1,-1)) #V[0,...]
V = tf.reshape(V,(iy,ix,channels))
Next add a couple of pixels of zero padding around the image
ix += 4
iy += 4
V = tf.image.resize_image_with_crop_or_pad(image, iy, ix)
Then reshape so that instead of 32 channels you have 4x8 channels, lets call them cy=4 and cx=8.
V = tf.reshape(V,(iy,ix,cy,cx))
Now the tricky part. tf seems to return results in C-order, numpy's default.
The current order, if flattened, would list all the channels for the first pixel (iterating over cx and cy), before listing the channels of the second pixel (incrementing ix). Going across the rows of pixels (ix) before incrementing to the next row (iy).
We want the order that would lay out the images in a grid.
So you go across a row of an image (ix), before stepping along the row of channels (cx), when you hit the end of the row of channels you step to the next row in the image (iy) and when you run out or rows in the image you increment to the next row of channels (cy). so:
V = tf.transpose(V,(2,0,3,1)) #cy,iy,cx,ix
Personally I prefer np.einsum for fancy transposes, for readability, but it's not in tf yet.
newtensor = np.einsum('yxYX->YyXx',oldtensor)
anyway, now that the pixels are in the right order, we can safely flatten it into a 2d tensor:
# image_summary needs 4d input
V = tf.reshape(V,(1,cy*iy,cx*ix,1))
try tf.image_summary on that, you should get a grid of little images.
Below is an image of what one gets after following all the steps here.
In case someone would like to "jump" to numpy and visualize "there" here is an example how to display both Weights and processing result. All transformations are based on prev answer by mdaoust.
# to visualize 1st conv layer Weights
vv1 = sess.run(W_conv1)
# to visualize 1st conv layer output
vv2 = sess.run(h_conv1,feed_dict = {img_ph:x, keep_prob: 1.0})
vv2 = vv2[0,:,:,:] # in case of bunch out - slice first img
def vis_conv(v,ix,iy,ch,cy,cx, p = 0) :
v = np.reshape(v,(iy,ix,ch))
ix += 2
iy += 2
npad = ((1,1), (1,1), (0,0))
v = np.pad(v, pad_width=npad, mode='constant', constant_values=p)
v = np.reshape(v,(iy,ix,cy,cx))
v = np.transpose(v,(2,0,3,1)) #cy,iy,cx,ix
v = np.reshape(v,(cy*iy,cx*ix))
return v
# W_conv1 - weights
ix = 5 # data size
iy = 5
ch = 32
cy = 4 # grid from channels: 32 = 4x8
cx = 8
v = vis_conv(vv1,ix,iy,ch,cy,cx)
plt.figure(figsize = (8,8))
plt.imshow(v,cmap="Greys_r",interpolation='nearest')
# h_conv1 - processed image
ix = 30 # data size
iy = 30
v = vis_conv(vv2,ix,iy,ch,cy,cx)
plt.figure(figsize = (8,8))
plt.imshow(v,cmap="Greys_r",interpolation='nearest')
you may try to get convolution layer activation image this way:
h_conv1_features = tf.unpack(h_conv1, axis=3)
h_conv1_imgs = tf.expand_dims(tf.concat(1, h_conv1_features_padded), -1)
this gets one vertical stripe with all images concatenated vertically.
if you want them padded (in my case of relu activations to pad with white line):
h_conv1_features = tf.unpack(h_conv1, axis=3)
h_conv1_max = tf.reduce_max(h_conv1)
h_conv1_features_padded = map(lambda t: tf.pad(t-h_conv1_max, [[0,0],[0,1],[0,0]])+h_conv1_max, h_conv1_features)
h_conv1_imgs = tf.expand_dims(tf.concat(1, h_conv1_features_padded), -1)
I personally try to tile every 2d-filter in a single image.
For doing this -if i'm not terribly mistaken since I'm quite new to DL- I found out that it could be helpful to exploit the depth_to_space function, since it takes a 4d tensor
[batch, height, width, depth]
and produces an output of shape
[batch, height*block_size, width*block_size, depth/(block_size*block_size)]
Where block_size is the number of "tiles" in the output image. The only limitation to this is that the depth should be the square of block_size, which is an integer, otherwise it cannot "fill" the resulting image correctly.
A possible solution could be of padding the depth of the input tensor up to a depth that is accepted by the method, but I sill havn't tried this.
Another way, which I think very easy, is using the get_operation_by_name function. I had hard time visualizing the layers with other methods but this helped me.
#first, find out the operations, many of those are micro-operations such as add etc.
graph = tf.get_default_graph()
graph.get_operations()
#choose relevant operations
op_name = '...'
op = graph.get_operation_by_name(op_name)
out = sess.run([op.outputs[0]], feed_dict={x: img_batch, is_training: False})
#img_batch is a single image whose dimensions are (1,n,n,1).
# out is the output of the layer, do whatever you want with the output
#in my case, I wanted to see the output of a convolution layer
out2 = np.array(out)
print(out2.shape)
# determine, row, col, and fig size etc.
for each_depth in range(out2.shape[4]):
fig.add_subplot(rows, cols, each_depth+1)
plt.imshow(out2[0,0,:,:,each_depth], cmap='gray')
For example below is the input(colored cat) and output of the second conv layer in my model.
Note that I am aware this question is old and there are easier methods with Keras but for people who use an old model from other people (such as me), this may be useful.