How are current generation clock frequencies achieved? - clock

I was recently reading through the design of PLLs and was thinking about how these reference clocks are generated.
We know that the reference is generated from a crystal (Generally Quartz), but the oscillations produced by these crystals top out at 100MHZ, how is this reference multiplied to achieve higher frequencies (GHz)?
Is there a circuit that is used to achieve this? (I'm looking at this from an analog designer's perspective).

Clock can be easily multiplied by 2 using clock trigger at both rising and falling edges. So, clock can get multiplied by 2^n using similar logic.

Related

React Native, IBECONS, RSSI value to distance conversion

How to stabilize the RSSI (Received Signal Strength Indicator) of low energy Bluetooth beacons (BLE) for more accurate distance calculation?
We are trying to develop an indoor navigation system and came across this problem where the RSSI is fluctuating so much that, the distance estimation is nowhere near the correct value. We tried using an advance average calculator but to no use,
The device is constantly getting RSSI values, how to filter them, how to get the mean value, I am completely lost, please help.
Can anyone suggest any npm library or point in the right direction, I have been searching for many days but have not gotten anywhere.
FRONT END: ReactNative BACKEND: NODEJS
In addition to the answer of #davidgyoung, we would like to point out that any filtering method is a compromise between quality of noise level reduction and the time-lag introduced by this filtration (depending on the characteristic filtering time you use in your method). As was pointed by #davidgyoung, if you take characteristic filtering period T you will get an average time-lag of about T/2.
Thus, I think the best approach to solve your problem is not to try to find the best filtering method but to make changes on the transmitter’s end itself.
First you can increase the number of signals, transmitter per second (most of the modern beacon allow to do so by using manufacturer applications and API).
Secondly, you can increase beacon's power (which is also usually one of the beacon’s settings), which usually reduces signal-to-noise ratio.
Finally, you can compare beacons from different vendors. At Navigine company we experimented and tested lots of different beacons from multiple manufacturers, and it appears that signal-to-noise ratio can significantly vary among existing manufacturers. From our side, we recommend taking a look at kontakt.io beacons (https://kontakt.io/) as an one of the recognized leaders with 5+ years experience in the area.
It is unlikely that you will find a pre-built package that will do what you want as your needs are pretty specific. You will most likely have to wtite your own filtering code.
A key challenge is to decide the parameters of your filtering, as an indoor nav use case often is impacted by time lag. If you average RSSI over 30 seconds, for example, the output of your filter will effectively give you the RSSI of where a moving object was on average 15 seconds ago. This may be inappropriate for your use case if dealing with moving objects. Reducing the averaging interval to 5 seconds might help, but still introduces time lag while reducing smoothing of noise. A filter called an Auto-Regressive Moving Average Filter might be a good choice, but I only have an implementation in Java so you would need to translate to JavaScript.
Finally, do not expect a filter to solve all your problems. Even if you smooth out the noise on the RSSI you may find that the distance estimates are not accurate enough for your use case. Make sure you understand the limits of what is possible with this technology. I wrote a deep dive on this topic here.

Why am I getting only zeros out of the VCO block in GNU Radio?

In GNU radio I am trying to use the frequency of one signal to generate another signal of a different frequency. Here is the flow diagram that I am using:
I generate a 50 kHz signal with a signal source block and feed this into a Log Power FFT block. I used the Argmax block to find the FFT bin with the most power and multiply that with a constant. I want to use this result as the input to the complex vco block to generate another signal with a different frequency. All vectors have a length of 4096.
However, looking at the output of the complex QT Gui Time Sink block, the output of the vco is always zero. This is strange to me because using a float QT Gui Time Sink to look at the output of the multiply block (which is also going to the input of the vco block), the result is 50,000 as expected. Why am I only getting zero out of the vco?
Also, my sample rate is set to 1M. I am assuming because of the vector length of 4096 that the sample rate out of the Argmax block will be 1M/4096 = 244. Is this correct?
I am running gnu radio companion on windows 10.
The proposed solution is not a solution. Please don't abuse the signal probe, which is really just that, a probe for slow, debugging or purely visual purposes. Every time I use it myself, I see how architecturally bad it is, and I personally think the project should be removing it from the block library altogether.
Now, instead of just say "probe is bad, do something else", let's analyse where your flow graph falls short:
your frequency estimation depends on the argmax of a block that was meant for pure visualization purposes. No, the output rate is not (sampling rate/FFT length), the output rate is roughly "frame rate" (but not actually exactly. That block is terrible and mixes "sample times" with "wall clock times"). Don't do that. If you need something like that, use the FFT block, followed my "complex to magnitude squared". You don't even want the logarithm - you're just looking for a maximum
Instead of looking for a maximum absolute value in an FFT, which is inherently a quantizing frequency estimator, use something that actually gives you an oscillation. There's multiple ways you can do that with a PLL!
your VCO solution probably does what it's programmed to do. You just use an inadequate sensitivity!
The sampling rate you assume in your time sinks is totally off, which is probably why you have the impression of a constant output – it just changes so slowly that you'll not notice.
So, I propose to instead, either / or:
Use the PLL Freq det. Feed the output of that into the VCO. Don't scale with a constant, but simply apply the proper sensitivity. Sensitivity is the factor between "input amplitude" and "phase advance per sample on the output in radians".
Use the PLL Carrier recovery. Use a resampler, or some other mathematical method, to generate the new frequency. You haven't told us how that other frequency relates to the input frequency, so I can't give you concrete advice.
Also notice that this very much suggest this being a case of "I'm trying to recreate an analog approach in digital"; that might be a good approach, but in many cases it's not.
If I might be as brazen: Describe why you need to generate that other frequency, for which purpose, in a post on https://dsp.stackexchange.com or to the GNU Radio mailing list discuss-gnuradio#gnu.org (sign up here). This really only barely is a programming problem, but really a signal processing problem. And there's a lot of people out there eager to help you find an appropriate solution that actually tackles your problem!
It looks like a better solution was to probe the output of the multiplier using a probe signal block along with a Function Probe Block to create a new variable. This variable could then be used as the frequency value in a separate Signal Source Block that is used to generate the new signal. This flow diagram seems to satisfy the original intended purpose: new flow diagram

Signal chain for tone detection?

I'm trying to make an embedded thingy that detects the presence of a 19kHz tone from an electret microphone. I have a multistage bandpass filter/preamp hooked into the ADC of a microcontroller, and am trying to figure out the best way to digitally condition the signal in order to detect the presence of the tone.
I have implemented a Goertzel filter to look for the frequency of interest. My ADC takes 400 samples at a frequency of 4000KHz, then the micro processes the block and adds the result to a 100 point moving average. Looking at terminal output after each block, I can definitely see an overall jump in the numbers when the transmitter is turned on. However, there's a lot of noise in the power readings when the thing is turned on, and the the noise floor in the room I'm in keeps changing, too. I am not sure how to tune the thresholding level/filter out all of this noise.
I've tried a few things, but they all seem to be pretty noisy as the baseline of my signal drifts all over the place:
Preprocessing the block with Hamming/Blackman windows
Ratio of total received block power to band power in filter output
Ratio of power of band in interest (19kHz) to a band outside of,
but near band of interest (18.5kHz)
EDIT: I've done some more reading since posting this. Is calculating (2*Ew)/(N*Et) where Ew is the output from my filter and Et is the sum of the squares in my block the best way to do this test?
Any advice on how to deal with this and/or do a better method of signal extraction?
Thanks!

How to implement lowpass filter to reduce noise in gyroscope values?

I am new to labview and I need help.
I am using myrio with gyroscope, and when I display the gyroscope values I get noise.
My question is: How can I implement lowpass filter to reduce the noise in X , Y and Z rates of the gyroscope?
I searched a lot, but I did not understand how can I know what is the sampling frequency, the low and the high cutoff frequency.
Thank you so much.
If you're data is noisy you should try to fix the problem before you digitize the data. If a physical low-pass filter will do the trick, install one. The better the signal before the DAQ the better the data will be once it's digitized.
Some other signal conditioning considerations: make sure to reduce the length of wire from the gyroscope to the DAQ to only what's necessary, if possible eliminate any sources of noise from the environment (like any large rotating magnets--seriously I once helped someone who was complaining about noise when they were using an unshielded wire next to an MRI machine), and if you're going to add any signal conditioning try to amplify close to your sensor.
If you still would like to filter in software, there's an example included with LabVIEW that demonstrates both the point-by-point VIs and the array based VIs. It's called PtByBp and Array Based Filter.vi and can be found in the Example Finder under Analysis, Signal Processing and Mathematics >> Filtering and Conditioning
Please install this FREE toolkit from ni.com: http://sine.ni.com/nips/cds/view/p/lang/en/nid/212733
There are examples and good ready to use application how to use myRIO gyroscope and how to do proper DSP.
Sampling frequency is how fast you sample. Look for this value in the ADC settings. Low and high cutoffs - play with those values. Doing an FFT on your signal may help you to determine spectral frequency density, and decide where to cut.

accelerometer measuring negative peaks of velocity

I'm writing an application for iphone4 and I'm taking values from the accelerometer to compute the current movement from a known initial position.
I've noticed a very strange behavior: often times when I walk holding the cellphone for a few meters and then I stop, I register a negative peak of overall velocity when the handset decelarates. How is that possible if I keep moving in the same direction?
To compute the variation in velocity I just do this:
delta_v = (acc_previous + acc_now)/2 * (1/(updating_frequency))
Say you are moving at a constant 10 m/s. Your acceleration is zero. Let's say, for the sake of simplicity, you sample every 1 second.
If you decelerate smoothly over a period of 0.1 seconds, you might get a reading of 100 m/s/s or you might not get a reading at all since the deceleration might fall between two windows. Your formula most likely will not detect any deceleration or if it does, you'll get two values of -50 m/s/s: (0 - 100) / 2 and then (-100 + 0) / 2. Either way you'll get the wrong final velocity.
Something similar could happen at almost any scale, All you need is a short period of high acceleration or deceleration that you happen to sample and your figures are screwed.
Numerical integration is hard. Naive numerical integration of a noisy signal will essentially always produce significant errors and drift (like what you're seeing). People have come up with all sorts of clever ways to deal with this problem, most of which require having some source of reference information other than the accelerometer (think of a Wii controller, which has not only an accelerometer, but also the thingy on top of the TV).
Note that any MEMS accelerometer is necessarily limited to reporting only a certain band of accelerations; if acceleration goes outside of that band, then you will absolutely get significant drift unless you have some way to compensate for it. On top of that, there is the fact that the acceleration is reported as a discrete quantity, so there is necessarily some approximation error as well as noise even if you do not go outside of the window. When you add all of those factors together, some amount of drift is inevitable.
Well if you move any object in one direction, there's a force involved which accelerates the object.
To make the object come to a halt again, the same force is needed in the exact opposite direction - or to be more precise, the vector of the acceleration event that happened before needs to be multiplied with -1. That's your negative peak.
Not strictly a programming answer, but then again, your question is not strictly a programming question :)
If it's going a thousand miles per hour, its acceleration is 0. If it's speeding, the acceleration is positive. If it's slowing down, the acceleration is negative.
You can use the absolute number of the velocity to invert any negative acceleration, if that's needed:
fabs(delta_v); // use abs for ints