Average Case Analysis vs Amortized Analysis - time-complexity

Right now I'm learning about average case analysis and amortized case analysis, and I began to wonder when exactly you would use average case analysis and when to use amortized case analysis. Also do they both accomplish the same thing?

Average-case analysis is distinct from amortized analysis. The difference is subtle.
Average case analysis studies is the expected runtime when selecting a single problem instance randomly from the set of all problem instances of a given size, subject to some specific probability distribution over those problem instances.
Amortized analysis studies is the expected aggregate runtime when solving instances of multiple problems in a specific order.
Consider the following algorithm:
dict = {}
Foo(bar[1...n])
1. if dict[bar] exists, return dict[bar]
2. if n is even then
3. dict[bar] = bar[1] if n > 0, or else 0 if n = 0
4. else if n is odd then
5. dict[bar] = foo(bar[1...(n-1)/2]
6. return dict[bar]
Average case analysis: suppose all lists of length n are equally likely (either assume that the values in the array are taken from a finite set, or that different arrays can be put into finitely many equivalence classes based not on absolute, but relative, sizes). The average-case runtime for inputs of size n is thus O(1) when n is even, and O(log(n)) when n is odd (in the worst case, n=1, 3, 7, 15, 31, ..., and you have to subtract and one and halve until you get all the way down to 1).
Amortized analysis: suppose you want to run this algorithm on arrays containing only the number 1, of lengths beginning with 0 all the way k. running for n = 0 takes constant time. Running for n = 1 does just one recursive step because we cached the result for n = 0. Continuing on, we fine all executions take just one recursive step because our sequence of executions has cached all results for recursive calls. Therefore, to execute k times, we do O(k) work; this means each individual execution has an amortized complexity of O(1).

Related

Time Complexity of Algorithms With Addition [duplicate]

I'm learning a course about big O notation on Coursera. I watched a video about the big O of a Fibonacci algorithm (non-recursion method), which is like this:
Operation Runtime
create an array F[0..n] O(n)
F[0] <-- 0 O(1)
F[1] <-- 1 O(1)
for i from 2 to n: Loop O(n) times
F[i] <-- F[i-1] + F[i-2] O(n) => I don't understand this line, isn't it O(1)?
return F[n] O(1)
Total: O(n)+O(1)+O(1)+O(n)*O(n)+O(1) = O(n^2)
I understand every part except F[i] <-- F[i-1] + F[i-2] O(n) => I don't understand this line, isn't it O(1) since it's just a simple addition? Is it the same with F[i] <-- 1+1?
The explanation they give me is:"But the addition is a bit worse. And normally additions are constant time. But these are large numbers. Remember, the nth Fibonacci number has about n over 5 digits to it, they're very big, and they often won't fit in the machine word."
"Now if you think about what happens if you add two very big numbers together, how long does that take? Well, you sort of add the tens digit and you carry, and you add the hundreds digit and you carry, and add the thousands digit, you carry and so on and so forth. And you sort of have to do work for each digits place.
And so the amount of work that you do should be proportional to the number of digits. And in this case, the number of digits is proportional to n, so this should take O(n) time to run that line of code".
I'm still a bit confusing. Does it mean a large number affects time complexity too? For example a = n+1 is O(1) while a = n^50+n^50 isn't O(1) anymore?
Video link for anyone who needed more information (4:56 to 6:26)
Big-O is just a notation for keeping track of orders of magnitude. But when we apply that in algorithms, we have to remember "orders of magnitude of WHAT"? In this case it is "time spent".
CPUs are set up to execute basic arithmetic on basic arithmetic types in constant time. For most purposes, we can assume we are dealing with those basic types.
However if n is a very large positive integer, we can't assume that. A very large integer will need O(log(n)) bits to represent. Which, whether we store it as bits, bytes, etc, will need an array of O(log(n)) things to store. (We would need fewer bytes than bits, but that is just a constant factor.) And when we do a calculation, we have to think about what we will actually do with that array.
Now suppose that we're trying to calculate n+m. We're going to need to generate a result of size O(log(n+m)), which must take at least that time to allocate. Luckily the grade school method of long addition where you add digits and keep track of carrying, can be adapted for big integer libraries and is O(log(n+m)) to track.
So when you're looking at addition, the log of the size of the answer is what matters. Since log(50^n) = n * log(50) that means that operations with 50^n are at least O(n). (Getting 50^n might take longer...) And it means that calculating n+1 takes time O(log(n)).
Now in the case of the Fibonacci sequence, F(n) is roughly φ^n where φ = (1 + sqrt(5))/2 so log(F(n)) = O(n).

Time complexity of probabilistic algorithm

The game is simple: a program has to 'guess' some given n such that 1 < n < N, where n and N are positive integers.
Assuming I'm using a true random number generator function ( rng() ) to generate the computer's 'guess', the probability that it will 'guess' the given n at any try is 1/N.
Example pseudo-code:
n = a // we assign some positive integer value to n
N = b // we assign some positive integer value to N
check loop
{
if rng(N) = n
print some success message
exit program
else
back to the beginning of the check loop
}
OK, I'm interested in how do I determine the time complexity (the upper bound especially) of this algorithm? I'm kind of confused. How does the probability aspect affect this? If I understand correctly, the worst case scenario (in theory) is that the program runs forever?
Even if theoretically your program can run forever, complexity here is O(n) - because doubling n you're halving probability of guessing particular value on every step, thus doubling number of steps. Even if program could run forever with given n, it would run twice forever if n is 2 times bigger.
Complexity in O notation doesn't tell you how many operations will be performed. It tells you how number of operations depends on input size.

Time complexity for finding largest eigenvalue

I'm trying to figure out the time complexity for calculating the largest eigenvector in a whole bunch of small matrices.
Each matrix is the adjacency matrix of the 1-step neighborhood of a node in a weighted, undirected graph. So all values are positive and the matrix is symmetric.
E.g.
0 2 1 1
2 0 1 0
1 1 0 0
1 0 0 0
I've found that the Power iteration method that is supposed to be O(n^2) complexity per iteration.
So does that mean the complexity for finding largest eigenvector for the 1-step neighborhood for every node in a graph is O(n * p^2), where n is the number of nodes, and p is the average degree of the graph (i.e. number of edges / number of nodes)?
Off the top of my head I would say your best bet is to use an iterative randomised algorithm known as the power iteration. The algorithm is iterative and finds true max eigenvalue with geometric convergence, with ratio of the largest eigenvalue to the second largest. So, if you two largest eigenvalues are equal do not use this method, otherwise it works quite nicely. You actually get the largest eigenvalue and respective eigenvector.
However, if you matrices are very small you might be just as well to perform PCA because it will not be so expensive. I am not aware of any hard threshold of when you should switch between the two. Also it depends if you are willing to accept small inaccuracies or the absolute true value.

does every algorithm have Big Omega?

does every algorithm have Big Omega?
Is it possible for algorithms to have both Big O and Big Omega (but not equal to each other- not Big Theta) ?
For instance Quicksort's Big O - O(n log n) But does it have Big Omega? If it does, how do i calculate it?
First, it is of paramount importance that one not confuse the bound with the case. A bound - like Big-Oh, Big-Omega, Big-Theta, etc. - says something about a rate of growth. A case says something about the kinds of input you're currently considering being processed by your algorithm.
Let's consider a very simple example to illustrate the distinction above. Consider the canonical "linear search" algorithm:
LinearSearch(list[1...n], target)
1. for i := 1 to n do
2. if list[i] = target then return i
3. return -1
There are three broad kinds of cases one might consider: best, worst, and average cases for inputs of size n. In the best case, what you're looking for is the first element in the list (really, within any fixed number of the start of the list). In such cases, it will take no more than some constant amount of time to find the element and return from the function. Therefore, the Big-Oh and Big-Omega happen to be the same for the best case: O(1) and Omega(1). When both O and Omega apply, we also say Theta, so this is Theta(1) as well.
In the worst case, the element is not in the list, and the algorithm must go through all n entries. Since f(n) = n happens to be a function that is bound from above and from below by the same class of functions (linear ones), this is Theta(n).
Average case analysis is usually a bit trickier. We need to define a probability space for viable inputs of length n. One might say that all valid inputs (where integers can be represented using 32 bits in unsigned mode, for instance) are equally probable. From that, one could work out the average performance of the algorithm as follows:
Find the probability that target is not represented in the list. Multiply by n.
Given that target is in the list at least once, find the probability that it appears at position k for each 1 <= k <= n. Multiply each P(k) by k.
Add up all of the above to get a function in terms of n.
Notice that in step 1 above, if the probability is non-zero, we will definitely get at least a linear function (exercise: we can never get more than a linear function). However, if the probability in step 1 is indeed zero, then the assignment of probabilities in step 2 makes all the difference in determining the complexity: you can have best-case behavior for some assignments, worst-case for others, and possibly end up with behavior that isn't the same as best (constant) or worst (linear).
Sometimes, we might speak loosely of a "general" or "universal" case, which considers all kinds of input (not just the best or the worst), but that doesn't give any particular weighting to inputs and doesn't take averages. In other words, you consider the performance of the algorithm in terms of an upper-bound on the worst-case, and a lower-bound on the best-case. This seems to be what you're doing.
Phew. Now, back to your question.
Are there functions which have different O and Omega bounds? Definitely. Consider the following function:
f(n) = 1 if n is odd, n if n is even.
The best case is "n is odd", in which case f is Theta(1); the worst case is "n is even", in which case f is Theta(n); and if we assume for the average case that we're talking about 32-bit unsigned integers, then f is Theta(n) in the average case, as well. However, if we talk about the "universal" case, then f is O(n) and Omega(1), and not Theta of anything. An algorithm whose runtime behaves according to f might be the following:
Strange(list[1...n], target)
1. if n is odd then return target
2. else return LinearSearch(list, target)
Now, a more interesting question might be whether there are algorithms for which some case (besides the "universal" case) cannot be assigned some valid Theta bound. This is interesting, but not overly so. The reason is that you, during your analysis, are allowed to choose the cases that constitutes best- and worst-case behavior. If your first choice for the case turns out not to have a Theta bound, you can simply exclude the inputs that are "abnormal" for your purposes. The case and the bound aren't completely independent, in that sense: you can often choose a case such that it has "good" bounds.
But can you always do it?
I don't know, but that's an interesting question.
Does every algorithm have a Big Omega?
Yes. Big Omega is a lower bound. Any algorithm can be said to take at least constant time, so any algorithm is Ω(1).
Does every algorithm have a Big O?
No. Big O is a upper bound. Algorithms that don't (reliably) terminate don't have a Big O.
An algorithm has an upper bound if we can say that, in the absolute worst case, the algorithm will not take longer than this. I'm pretty sure O(∞) is not valid notation.
When will the Big O and Big Omega of an algorithm be equal?
There is actually a special notation for when they can be equal: Big Theta (Θ).
They will be equal if the algorithm scales perfectly with the size of the input (meaning there aren't input sizes where the algorithm is suddenly a lot more efficient).
This is assuming we take Big O to be the smallest possible upper bound and Big Omega to be the largest possible lower bound. This is not actually required from the definition, but they're commonly informally treated as such. If you drop this assumption, you can find a Big O and Big Omega that aren't equal for any algorithm.
Brute force prime number checking (where we just loop through all smaller numbers and try to divide them into the target number) is perhaps a good example of when the smallest upper bound and largest lower bound are not equal.
Assume you have some number n. Let's also for the time being ignore the fact that bigger numbers take longer to divide (a similar argument holds when we take this into account, although the actual complexities would be different). And I'm also calculating the complexity based on the number itself instead of the size of the number (which can be the number of bits, and could change the analysis here quite a bit).
If n is divisible by 2 (or some other small prime), we can very quickly check whether it's prime with 1 division (or a constant number of divisions). So the largest lower bound would be Ω(1).
Now if n is prime, we'll need to try to divide n by each of the numbers up to sqrt(n) (I'll leave the reason we don't need to go higher than this as an exercise). This would take O(sqrt(n)), which would also then be our smallest upper bound.
So the algorithm would be Ω(1) and O(sqrt(n)).
Exact complexity also may be hard to calculate for some particularly complex algorithms. In such cases it may be much easier and acceptable to simply calculate some reasonably close lower and upper bounds and leave it at that. I don't however have an example on hand for this.
How does this relate to best case and worst case?
Do not confuse upper and lower bounds for best and worst case. This is a common mistake, and a bit confusing, but they're not the same. This is a whole other topic, but as a brief explanation:
The best and worst (and average) cases can be calculated for every single input size. The upper and lower bounds can then be used for each of those 3 cases (separately). You can think of each of those cases as a line on a graph with input size on the x-axis and time on the y-axis and then, for each of those lines, the upper and lower bounds are lines which need to be strictly above or below that line as the input size tends to infinity (this isn't 100% accurate, but it's a good basic idea).
Quick-sort has a worst-case of Θ(n2) (when we pick the worst possible pivot at every step) and a best-case of Θ(n log n) (when we pick good pivots). Note the use of Big Theta, meaning each of those are both lower and upper bounds.
Let's compare quick-sort with the above prime checking algorithm:
Say you have a given number n, and n is 53. Since it's prime, it will (always) take around sqrt(53) steps to determine whether it's prime. So the best and worst cases are all the same.
Say you want to sort some array of size n, and n is 53. Now those 53 elements can be arranged such that quick-sort ends up picking really bad pivots and run in around 532 steps (the worst case) or really good pivots and run in around 53 log 53 steps (the best case). So the best and worst cases are different.
Now take n as 54 for each of the above:
For prime checking, it will only take around 1 step to determine that 54 is prime. The best and worst cases are the same again, but they're different from what they were for 53.
For quick-sort, you'll again have a worst case of around 542 steps and a best case of around 54 log 54 steps.
So for quick-sort the worst case always takes around n2 steps and the best case always takes around n log n steps. So the lower and upper (or "tight") bound of the worst case is Θ(n2) and the tight bound of the best case is Θ(n log n).
For our prime checking, sometimes the worst case takes around sqrt(n) steps and sometimes it takes around 1 step. So the lower bound for the worse case would be Ω(1) and upper bound would be O(sqrt(n)). It would be the same for the best case.
Note that above I simply said "the algorithm would be Ω(1) and O(sqrt(n))". This is slightly ambiguous, as it's not clear whether the algorithm always takes the same amount of time for some input size, or the statement is referring to one of the best, average or worst case.
How do I calculate this?
It's hard to give general advice for this since proofs of bounds are greatly dependent on the algorithm. You'd need to analyse the algorithm similar to what I did above to figure out the worst and best cases.
Big O and Big Omega it can be calculated for every algorithm as you can see in Big-oh vs big-theta

do numbers in an array contain sides of a valid triange

Check if an array of n integers contains 3 numbers which can form a triangle (i.e. the sum of any of the two numbers is bigger than the third).
Apparently, this can be done in O(n) time.
(the obvious O(n log n) solution is to sort the array so please don't)
It's difficult to imagine N numbers (where N is moderately large) so that there is no triangle triplet. But we'll try:
Consider a growing sequence, where each next value is at the limit N[i] = N[i-1] + N[i-2]. It's nothing else than Fibonacci sequence. Approximately, it can be seen as a geometric progression with the factor of golden ratio (GRf ~= 1.618).
It can be seen that if the N_largest < N_smallest * (GRf**(N-1)) then there sure will be a triangle triplet. This definition is quite fuzzy because of floating point versus integer and because of GRf, that is a limit and not an actual geometric factor. Anyway, carefully implemented it will give an O(n) test that can check if the there is sure a triplet. If not, then we have to perform some other tests (still thinking).
EDIT: A direct conclusion from fibonacci idea is that for integer input (as specified in Q) there will exist a garanteed solution for any possible input if the size of array will be larger than log_GRf(MAX_INT), and this is 47 for 32 bits or 93 for 64 bits. Actually, we can use the largest value from the input array to define it better.
This gives us a following algorithm:
Step 1) Find MAX_VAL from input data :O(n)
Step 2) Compute the minimum array size that would guarantee the existence of the solution:
N_LIMIT = log_base_GRf(MAX_VAL) : O(1)
Step 3.1) if N > N_LIMIT : return true : O(1)
Step 3.2) else sort and use direct method O(n*log(n))
Because for large values of N (and it's the only case when the complexity matters) it is O(n) (or even O(1) in cases when N > log_base_GRf(MAX_INT)), we can say it's O(n).