Impact of negative correlation on categorical data? - pandas

PS: I am a student of Data Science, I was wondering the impact of correlation on categorical data.
Let say I have 2 features such as Ticket Class with 1,2,3 (class 3 is lower than class 1) as a category and Seat Numbers as A,B,C,D,E,F & N (where N represents missing data) another category.
It looks like this :
Tclass Seat
1 A
2 C
3 E
2 D
3 N
1 A
1 N
Steps I perform is :
I one hot encode the seat no
Then I check the correlation of resultant data frame by using df.corr()
The result of Correlation is :
Tclass 1.000000
Seat_N 0.713857
Seat_F 0.013122
Seat_C -0.042750
Seat_A -0.202143
Seat_E -0.225649
Seat_D -0.265341
Seat_B -0.353414
My questions are :
In this case the conclusion drawn is that missing data (N) is highly correlated to lower class. WHY was this conclusion made from the correlation data?
Conclusion made was Seat_B related to higher class while seat_N related to lower class tickets.
Is this the answer : Since, Seat_N have a +ve correlation it should mean it yields higher value of Tclass, which is numeric value of 3. In other terms Lower class
If we correlate categorical data, how can we get -ve results? (can someone share some reading material on this?)
How to interpret the result of correlation of one categorical data on another categorical data? (this question leads on question 2)
Would it be possible for me to perform correlation if the Tclass was non-numerical/label encoded ?
Reference : https://www.kaggle.com/ccastleberry/titanic-cabin-features/comments

Related

Order-independent Deep Learning Model

I have a dataset with parallel time series. The column 'A' depends on columns 'B' and 'C'. The order (and the number) of dependent columns can change. For example:
A B C
2022-07-23 1 10 100
2022-07-24 2 20 200
2022-07-25 3 30 300
How should I transform this data, or how should I build the model so the order of columns 'B' and 'C' ('A', 'B', 'C' vs 'A', C', 'B'`) doesn't change the result? I know about GCN, but I don't know how to implement it. Maybe there are other ways to achieve it.
UPDATE:
I want to generalize my question and make one more example. Let's say we have a matrix as a singe observation (no time series data):
col1 col2 target
0 1 a 20
1 2 a 30
2 3 b 30
3 4 b 40
I would like to predict one value 'target' per each row/instance. Each instance depends on other instances. The order of rows is irrelevant, and the number of rows in each observation can change.
You are looking for a permutation invariant operation on the columns.
One way of achieving this would be to apply column-wise operation, followed by a global pooling operation.
How that achieves your goal:
column-wise operations are permutation equivariant; that is, applying the operation on the columns and permuting the output, is the same as permuting the columns and then applying the operation.
A global pooling operation (e.g., max-pool, avg-pool) across the columns is permutation invariant: the result of an average pool does not depend on the order of the columns.
Applying a permutation invariant operation on top of a permutation equivariant one results in an overall permutation invariant function.
Additionally, you should look at self-attention layers, which are also permutation equivariant.
What I would try is:
Learn a representation (RNN/Transformer) for a single time series. Apply this representation to A, B and C.
Learn a transformer between the representation of A to those of B and C: that is, use the representation of A as "query" and those of B and C as "keys" and "values".
This will give you a representation of A that is permutation invariant in B and C.
Update (Aug 3rd, 2022):
For the case of "observations" with varying number of rows, and fixed number of columns:
I think you can treat each row as a "token" (with a fixed dimension = number of columns), and apply a Transformer encoder to predict the target for each "token", from the encoded tokens.

arules CBA with ordered factor

I am trying to run CBA() classifier (package=arulesCBA) over a dataframe consisting of binary variables (e.g. man/woman) and ordered factors (e.g. age group 1 - 5).
While putting the data.frame with variables as factors and ordered factors as data to CBA(), I get an error:
> Error in discretizeDF.supervised(formula, data, method = disc.method) :
> Cannot discretize non-numeric column: GENAGEGROUPQ2Q8_2Q8_3Q8_4FAM_1FAM_2
When I coerce the data.frame to transactions:
> trans <- transactions(my.dataframe)
...CBA() works nicely but seems that the information about the "order" in ordered factor is lost.
Is there a workaround to keep the information about the order of levels in the ordered factors? Perhaps to treat them as integer (as in the example with iris data)?
Many thanks!
Zdenek Skala

Example on Transportaion dilemma

A lumber company ships pine flooring from its three mills, A 1 ,
A 2 and A 3 , to three building suppliers, B 1 , B 2 and B 3 . The
table below shows the demand, availabilities and unit costs of
transportation. Starting with the north-west corner solution
and using the stepping-stone method, determine the
transportation pattern that minimises the total cost.
The distribution matrix with nothes-west corner method give the following matrix :
{ [25,0,0] , [5,30,5] , [0,0,31] }
then i compute the improvements indices for unused cells , and check for optimal. it's not optimal sol cell (3,1) is negative 1 .
I cannot apply stepping stone method on this distribution matrix because the second row has three consecutive basic cell . What is the optimal solution ?
The Optimal distribution Matrix is { [0,0,25],[0,30,10],[30,0,1] }.
The Optimal cost = 25*(2)+30*(2)+10*(3)+30*(3)+1*(3) = 233
the answer obtained after three iterations.

Deterministic/non-deterministic state system mapping

I read in a book on non-deterministic mapping there is mapping from Q*∑ to 2Q for M=(Q,∑,trans,q0,F)
where Q is a set of states.
But I am not able to understand how it's 2Q;
if there are 3 states a, b, c, how does it map to 8 states?
I always found that the easiest way to think about these (since the set of states is finite) is as having each of those subsets be an encoding of a base-2 number that ranges from 0 (all bits zero) to 2|Q|-1 (all bits one), where there are as many bits in the number as there are members in the state set, Q. Then, you can just take one of these numbers and map it into a subset by using whether a particular bit in the number is set. Easy!
Here's a worked example where Q = {a,b,c}. In this case, |Q| is 3 (there are three elements) and so 23 is 8. That means we get this if we say that the leading bit is for element a, the next bit is for b, and the trailing bit for c:
0 = 000 = {}
1 = 001 = {c}
2 = 010 = {b}
3 = 011 = {b,c}
4 = 100 = {a}
5 = 101 = {a,c}
6 = 110 = {a,b}
7 = 111 = {a,b,c}
See? That initial three states has been transformed into 8, and we have a natural numbering of them that we could use to create the labels of those states if we chose.
Now, to the interpretations of this within a non-deterministic context. Basically, the non-determinism means that we're uncertain about what state we're in. We represent this by using a pseudo-state that is the set of “real” states that we might be in; if we have total non-determinism then we are in the pseudo-state where all real-states are possible (i.e., {a,b,c}) whereas the pseudo-state where no real-states are possible (i.e., {}) is the converse (and really ought to be impossible to reach in the transition system). In a real system, you're usually not dealing with either of those extremes.
The logic of how you convert the deterministic transition system into a non-deterministic one is rather more complex than I want to go into here. (I had to read a substantial PhD thesis to learn it so it's definitely more than an SO answer's worth!)
2Q means the set of all subsets of Q. For each state q and each letter x from sigma, there is a subset of Q states to which you can go from q with letter x. So yeah, if there are three states abc the set 2Q consists of 8 elements {{}, {a}, {b}, {c}, {a,b}, {a,c}, {b,c}, {a,b,c}}. It doesn't map to 8 states, it maps to one of these 8 sets. HTH

Power-law distribution in T-SQL

I basically need the answer to this SO question that provides a power-law distribution, translated to T-SQL for me.
I want to pull a last name, one at a time, from a census provided table of names. I want to get roughly the same distribution as occurs in the population. The table has 88,799 names ranked by frequency. "Smith" is rank 1 with 1.006% frequency, "Alderink" is rank 88,799 with frequency of 1.7 x 10^-6. "Sanders" is rank 75 with a frequency of 0.100%.
The curve doesn't have to fit precisely at all. Just give me about 1% "Smith" and about 1 in a million "Alderink"
Here's what I have so far.
SELECT [LastName]
FROM [LastNames] as LN
WHERE LN.[Rank] = ROUND(88799 * RAND(), 0)
But this of course yields a uniform distribution.
I promise I'll still be trying to figure this out myself by the time a smarter person responds.
Why settle for the power-law distribution when you can draw from the actual distribution ?
I suggest you alter the LastNames table to include a numeric column which would contain a numeric value representing the actual number of indivuduals with a name that is more common. You'll probably want a number on a smaller but proportional scale, say, maybe 10,000 for each percent of representation.
The list would then look something like:
(other than the 3 names mentioned in the question, I'm guessing about White, Johnson et al)
Smith 0
White 10,060
Johnson 19,123
Williams 28,456
...
Sanders 200,987
..
Alderink 999,997
And the name selection would be
SELECT TOP 1 [LastName]
FROM [LastNames] as LN
WHERE LN.[number_described_above] < ROUND(100000 * RAND(), 0)
ORDER BY [number_described_above] DESC
That's picking the first name which number does not exceed the [uniform distribution] random number. Note how the query, uses less than and ordering in desc-ending order; this will guaranty that the very first entry (Smith) gets picked. The alternative would be to start the series with Smith at 10,060 rather than zero and to discard the random draws smaller than this value.
Aside from the matter of boundary management (starting at zero rather than 10,060) mentioned above, this solution, along with the two other responses so far, are the same as the one suggested in dmckee's answer to the question referenced in this question. Essentially the idea is to use the CDF (Cumulative Distribution function).
Edit:
If you insist on using a mathematical function rather than the actual distribution, the following should provide a power law function which would somehow convey the "long tail" shape of the real distribution. You may wan to tweak the #PwrCoef value (which BTW needn't be a integer), essentially the bigger the coeficient, the more skewed to the beginning of the list the function is.
DECLARE #PwrCoef INT
SET #PwrCoef = 2
SELECT 88799 - ROUND(POWER(POWER(88799.0, #PwrCoef) * RAND(), 1.0/#PwrCoef), 0)
Notes:
- the extra ".0" in the function above are important to force SQL to perform float operations rather than integer operations.
- the reason why we subtract the power calculation from 88799 is that the calculation's distribution is such that the closer a number is closer to the end of our scale, the more likely it is to be drawn. The List of family names being sorted in the reverse order (most likely names first), we need this substraction.
Assuming a power of, say, 3 the query would then look something like
SELECT [LastName]
FROM [LastNames] as LN
WHERE LN.[Rank]
= 88799 - ROUND(POWER(POWER(88799.0, 3) * RAND(), 1.0/3), 0)
Which is the query from the question except for the last line.
Re-Edit:
In looking at the actual distribution, as apparent in the Census data, the curve is extremely steep and would require a very big power coefficient, which in turn would cause overflows and/or extreme rounding errors in the naive formula shown above.
A more sensible approach may be to operate in several tiers i.e. to perform an equal number of draws in each of the, say, three thirds (or four quarters or...) of the cumulative distribution; within each of these parts list, we would draw using a power law function, possibly with the same coeficient, but with different ranges.
For example
Assuming thirds, the list divides as follow:
First third = 425 names, from Smith to Alvarado
Second third = 6,277 names, from to Gainer
Last third = 82,097 names, from Frisby to the end
If we were to need, say, 1,000 names, we'd draw 334 from the top third of the list, 333 from the second third and 333 from the last third.
For each of the thirds we'd use a similar formula, maybe with a bigger power coeficient for the first third (were were are really interested in favoring the earlier names in the list, and also where the relative frequencies are more statistically relevant). The three selection queries could look like the following:
-- Random Drawing of a single Name in top third
-- Power Coef = 12
SELECT [LastName]
FROM [LastNames] as LN
WHERE LN.[Rank]
= 425 - ROUND(POWER(POWER(425.0, 12) * RAND(), 1.0/12), 0)
-- Second third; Power Coef = 7
...
WHERE LN.[Rank]
= (425 + 6277) - ROUND(POWER(POWER(6277.0, 7) * RAND(), 1.0/7), 0)
-- Bottom third; Power Coef = 4
...
WHERE LN.[Rank]
= (425 + 6277 + 82097) - ROUND(POWER(POWER(82097.0, 4) * RAND(), 1.0/4), 0)
Instead of storing the pdf as rank, store the CDF (the sum of all frequencies until that name, starting from Aldekirk).
Then modify your select to retrieve the first LN with rank greater than your formula result.
I read the question as "I need to get a stream of names which will mirror the frequency of last names from the 1990 US Census"
I might have read the question a bit differently than the other suggestions and although an answer has been accepted, and a very through answer it is, I will contribute my experience with the Census last names.
I had downloaded the same data from the 1990 census. My goal was to produce a large number of names to be submitted for search testing during performance testing of a medical record app. I inserted the last names and the percentage of frequency into a table. I added a column and filled it with a integer which was the product of the "total names required * frequency". The frequency data from the census did not add up to exactly 100% so my total number of names was also a bit short of the requirement. I was able to correct the number by selecting random names from the list and increasing their count until I had exactly the required number, the randomly added count never ammounted to more than .05% of the total of 10 million.
I generated 10 million random numbers in the range of 1 to 88799. With each random number I would pick that name from the list and decrement the counter for that name. My approach was to simulate dealing a deck of cards except my deck had many more distinct cards and a varing number of each card.
Do you store the actual frequencies with the ranks?
Converting the algebra from that accepted answer to MySQL is no bother, if you know what values to use for n. y would be what you currently have ROUND(88799 * RAND(), 0) and x0,x1 = 1,88799 I think, though I might misunderstand it. The only non-standard maths operator involved from a T-SQL perspective is ^ which is just POWER(x,y) == x^y.