Related
I have been roaming these forums for a few years and I've always found my questions had already been asked, and a fitting answer was already present.
I have a pretty generic (and maybe easy) question now though, but I haven't been able to find a thread asking the same one yet.
The situation:
I have a payment table with 10-50M records per day, a history of 10 days and hundreds of columns. About 10-20 columns are indexed. One of the indices is batch_id.
I have a batch table with considerably fewer records and columns, say 10k a day and 30 columns.
If I want to select all payments from one specific sender, I could just do this:
Select * from payments p
where p.sender_id = 'SenderA'
This runs a while, even though sender_id is also indexed. So I figure, it's better to select the batches first, then go into the payments table with the batch_id:
select * from payments p
where p.batch_id in
(select b.batch_id from batches where b.sender_id = 'SenderA')
--and p.sender_id = 'SenderA'
Now, my questions are:
In the second script, should I uncomment the Sender_id in my where clause on the payments table? It doesn't feel very efficient to filter on sender_id twice, even though it's in different tables.
Is it better if I make it an inner join instead of a nested query?
Is it better if I make it a common table expression instead of a nested query or inner join?
I suppose it could all fit into one question: What is the best way to query this?
In the worst case the two queries should run in the same time and in the best case I would expect the first query to run quicker. If it is running slower, there is some problem elsewhere. You don't need the additional condition in the second query.
The first query will retrieve index entries for a single value, so that is going to access less blocks than the second query which has to find index entries for multiple batches (as well as executing the subquery, but that is probably not significant).
But the danger as always with Oracle is that there are a lot of factors determining which query plan the optimizer chooses. I would immediately verify that the statistics on your indexed columns are up-to-date. If they are not, this might be your problem and you don't need to read any further.
The next step is to obtain a query execution plan. My guess is that this will tell you that your query is running a full-table-scan.
Whether or not Oracle choses to perform a full-table-scan on a query such as this is dependent on the number of rows returned and whether Oracle thinks it is more efficient to use the index or to simply read the whole table. The threshold for flipping between the two is not a fixed number: it depends on a lot of things, one of them being a parameter called DB_FILE_MULTIBLOCK_READ_COUNT.
This is set-up by Orale and in theory it should be configured such that the transition between indexed and full-table scan queries should be smooth. In other words, at the transition point where your query is returning enough rows to just about make a full table scan more efficient, the index scan and the table scan should take roughly the same time.
Unfortunately, I have seen systems where this is way out and Oracle flips to doing full table scans far too quickly, resulting in a long query time once the number of rows gets over a certain threshold.
As I said before, first check your statistics. If that doesn't work, get a QEP and start tuning your Oracle instance.
Tuning Oracle is a very complex subject that can't be answered in full here, so I am forced to recommend links. Here is a useful page on the parameter: reducing it might help: Why Change the Oracle DB_FILE_MULTIBLOCK_READ_COUNT.
Other than that, the general Oracle performance tuning guide is here: (Oracle) Configuring a Database for Performance.
If you are still having problems, you need to progress your investigation further and then come up with a more specific question.
EDIT:
Based on your comment where you say your query is returning 4M rows out of 10M-50M in the table. If it is 4M out of 10M there is no way an index will be of any use. Even with 4M out of 50M, it is still pretty certain that a full-table-scan would be the most efficient approach.
You say that you have a lot of columns, so probably this 4M row fetch is returning a huge amount of data.
You could perhaps consider splitting off some of the columns that are not required and putting them into a child table. In particular, if you have columns containing a lot of data (e.g., some text comments or whatever) they might be better being kept outside the main table.
Remember - small is fast, not only in terms of number of rows, but also in terms of the size of each row.
SQL is an declarative language. This means, that you specify what you like not how.
Check your indexes primary and "normal" ones...
I have an SQL Azure database, and one of the tables contains over 400k objects. One of the columns in this table is a count of the number of times that the object has been downloaded.
I have several queries that include this particular column (call it timesdownloaded), sorted descending, in order to find the results.
Here's an example query in LINQ to SQL (I'm writing all this in C# .NET):
var query = from t in db.tablename
where t.textcolumn.StartsWith(searchfield)
orderby t.timesdownloaded descending
select t.textcolumn;
// grab the first 5
var items = query.Take(5);
This query called perhaps 90 times per minute on average.
Objects are downloaded perhaps 10 times per minute on average, so this timesdownloaded column is updated that frequently.
As you can imagine, any index involving the timesdownloaded column gets over 30% fragmented in a matter of hours. I have implemented an index maintenance plan that checks and rebuilds these indexes when necessary every few hours. This helps, but of course adds spikes in query response times whenever the indexes are rebuilt which I would like to avoid or minimize.
I have tried a variety of indexing schemes.
The best performing indexes are covering indexes that include both the textcolumn and timesdownloaded columns. When these indexes are rebuilt, the queries are amazingly quick of course.
However, these indexes fragment badly and I end up with pretty frequent delay spikes due to rebuilding indexes and other factors that I don't understand.
I have also tried simply not indexing the timesdownloaded column. This seems to perform more consistently overall, though slower of course. And when I check on the SQL query execution plan, it seems to be pretty inconsistent in how SQL tries to optimize this query. Of course it ends up with a log of logical reads as it has to fetch the timesdownloaded column from the table and not an organized index. So this isn't optimal.
What I'm trying to figure out is if I am fundamentally missing something in how I have configured or manage this database.
I'm no SQL expert, and I've yet to find a good answer for how to do this.
I've seen some suggestions that Stored Procedures could help, but I don't understand why and haven't tried to get those going with LINQ just yet.
As commented below, I have considered caching but haven't taken that step yet either.
For some context, this query is a part of a search suggestion feature. So it is called frequently with many different search terms.
Any suggestions would be appreciated!
Based on the comments to my question and further testing, I ended up using an Azure Table to cache my results. This is working really well and I get a lot of hits off of my cache and many fewer SQL queries. The overall performance of my API is much better now.
I did try using Azure In Role Caching, but that method doesn't appear to work well for my needs. It ended up using too much memory (no matter how I configured it, which I don't understand), swapping to disk like crazy and brought my little Small instances to their knees. I don't want to pay more at the moment, so Tables it is.
Thanks for the suggestions!
I have a query referenced in Why is SQLite refusing to use available indexes when adding a JOIN? that is a compound query. When the segments of the query are evaluated individually, the query plan generated applies the relevant indicies and runs smoothly. However, when run together (via a JOIN) it fails to do so. Therefore, I was wondering if there was a way to create a query that runs 'eval' on the subquery and passes that to the outer query to force SQLite to use the query plans that would have been generated had they been done individually.
The answer to your other question tells you why already: indexes are not used when they're not useful.
In essence:
If it's cheapest to hop back and forth on disk pages to fetch a handful of rows that match a query, an index gets used.
If it's cheapest to just read the entire mess and filter out uneeded rows, an index is not used.
Some databases (e.g. Postgres) offer an intermediary level between the two in the form of a bitmap index scan: it amounts to the second with a pre-flight check based on the index, to avoid visiting disk pages that contain no matching rows.
That's all there is to it, really: a few rows, index; lots of rows, no index.
Naturally, poorly written queries don't use indexes either, but that's for different reasons: they just confuse the query planner, and while smart the latter is not all-knowing. Joining on a union or an aggregate, in particular, are a prime recipe for not using indexes. (And that is what you are doing.)
Per usual you should write your queries and indexes that way so that Sqlite's query optimizer recognizes the optimal indexes and just uses them.
But as your question in this case is more specific it seems you look for an equivalent of SQL Server's FORCE(INDEX) clause.
As I have read about it in Sqlite there is the clause INDEXED BY, though it seems Sqlite's community's opinions about it are split (probably because of what I mentioned in my first sentence)
link 1 sqlite.org's documentation about it
link 2 for a tutorial on that
How costly would SELECT One, Two, Three be compared to SELECT One, Two, Three, ..... N-Column
If you have a sql query that has two or three tables joined together and is retrieving 100 rows of data, does performance have anything to say whether I should be selecting only the number of columns I need? Or should I write a query that just yanks all the columns..
If possible, could you help me understand what aspects of a query would be relatively costly compared to one another? Is it the joins? is it the large number of records pulled? is it the number of columns in the select statement?
Would 1 record vs 10 record vs 100 record matter?
As an extremely generalized version of ranking those factors you mention in terms of performance penalty and occurrence in the queries you write, I would say:
Joins - Especially when joining on tables with no indexes for the fields you're joining on and/or with tables that have a very large amount of data.
# of Rows / Amount of Data - Again, indexes mitigate this quite a bit, just make sure you have the right ones.
# of Fields - I would say the # of fields in the SELECT clause impact performance the least in most situations.
I would say any performance-driving property is always coupled with how much data you have - sure a join might be fast when your tables have 100 rows each, but when millions of rows are in the tables, you have to start thinking about more efficient design.
Several things impact the cost of a query.
First, are there appropriate indexes for it to use. Fields that are used in a join should almost always be indexed and foreign keys are not indexed by default, the designer of the database must create them. Fields used inthe the where clasues often need indexes as well.
Next, is the where clause sargable, in other words can it use the indexes even if you have the correct ones? A bad where clause can hurt a query far more than joins or extra columns. You can't get anything but a table scan if you use syntax that prevents the use of an index such as:
LIKE '%test'
Next, are you returning more data than you need? You should never return more columns than you need and you should not be using select * in production code as it has additional work to look up the columns as well as being very fragile and subject to create bad bugs as the structure changes with time.
Are you joining to tables you don't need to be joining to? If a table returns no columns in the select, is not used in the where and doesn't filter out any records if the join is removed, then you have an unnecessary join and it can be eliminated. Unnecessary joins are particularly prevalant when you use a lot of views, especially if you make the mistake of calling views from other views (which is a buig performance killer for may reasons) Sometimes if you trace through these views that call other views, you will see the same table joined to multiple times when it would not have been necessary if the query was written from scratch instead of using a view.
Not only does returning more data than you need cause the SQL Server to work harder, it causes the query to use up more of the network resources and more of the memory of the web server if you are holding the results in memory. It is an all arouns poor choice.
Finally are you using known poorly performing techniques when a better one is available. This would include the use of cursors when a set-based alternative is better, the use of correlated subqueries when a join would be better, the use of scalar User-defined functions, the use of views that call other views (especially if you nest more than one level. Most of these poor techniques involve processing row-by-agonizing-row which is generally the worst choice in a database. To properly query datbases you need to think in terms of data sets, not processing one row at a time.
There are plenty more things that affect performance of queries and the datbase, to truly get a grip onthis subject you need to read some books onthe subject. This is too complex a subject to fully discuss in a message board.
Or should I write a query that just yanks all the columns..
No. Just today there was another question about that.
If possible, could you help me understand what aspects of a query would be relatively costly compared to one another? Is it the joins? is it the large number of records pulled? is it the number of columns in the select statement?
Any useless join or data retrieval costs you time and should be avoided. Retrieving rows from a datastore is costly. Joins can be more or less costly depending on the context, amount of indexes defined... you can examine the query plan of each query to see the estimated cost for each step.
Selecting more columns/rows will have some performance impacts, but honestly why would you want to select more data than you are going to use anyway?
If possible, could you help me
understand what aspects of a query
would be relatively costly compared to
one another?
Build the query you need, THEN worry about optimizing it if the performance doesn't meet your expectations. You are putting the horse before the cart.
To answer the following:
How costly would SELECT One, Two,
Three be compared to SELECT One, Two,
Three, ..... N-Column
This is not a matter of the select performance but the amount of time it takes to fetch the data. Select * from Table and Select ID from Table preform the same but the fetch of the data will take longer. This goes hand in hand with the number of rows returned from a query.
As for understanding preformance here is a good link
http://www.dotnetheaven.com/UploadFile/skrishnasamy/SQLPerformanceTunning03112005044423AM/SQLPerformanceTunning.aspx
Or google tsql Performance
Joins have the potential to be expensive. In the worst case scenario, when no indexes can be used, they require O(M*N) time, where M and N are the number of records in the tables. To speed things up, you can CREATE INDEX on columns that are part of the join condition.
The number of columns has little effect on the time required to find rows, but slows things down by requiring more data to be sent.
What others are saying is all true.
But typically, if you are working with tables that already have good indexes, what's most important for performance is what goes into the WHERE statement. There you have to worry more about using a field that has no index or using a statement that can't me optimized.
The difference between SELECT One, Two, Three FROM ... and SELECT One,...,N FROM ... could be like the difference between day and night. To understand the problem, you need to understand the concept of a covering index:
A covering index is a special case
where the index itself contains the
required data field(s) and can return
the data.
As you add more unnecessary columns to the projection list you are forcing the query optimizer to lookup the newly added columns in the 'table' (really in the clustered index or in the heap). This can change an execution plan from an efficient narrow index range scan or seek into a bloated clustered index scan, which can result in differences of times from sub-second to +hours, depending on your data. So projecting unnecessary columns is often the most impacting factor of a query.
The number of records pulled is a more subtle issue. With a large number, a query can hit the index tipping point and choose, again, a clustered index scan over narrower index range scan and lookup. Now the fact that lookups into the clustered index are necessary to start with means the narrow index is not covering, which ultimately may be caused by projecting unnecessary column.
And finally, joins. The question here is joins, as opposed to what else? If a join is required, there is no alternative, and that's all there is to say about this.
Ultimately, query performance is driven by one factor alone: amount of IO. And the amount of IO is driven ultimately by the access paths available to satisfy the query. In other words, by the indexing of your data. It is impossible to write efficient queries on bad indexes. It is possible to write bad queries on good indexes, but more often than not the optimizer can compensate and come up with a good plan. You should spend all your effort in better understanding index design:
Designing Indexes
SQL Server Optimization
Short answer: Dont select more fields then you need - Search for "*" in both your sourcecode and your stored procedures ;)
You allways have to consider what parts of the query will cause which costs.
If you have a good DB design, joining a few tables is usually not expensive. (Make sure you have correct indices).
The main issue with "select *" is that it will cause unpredictable behavior in your results. If you write a query like that, AND access the fields with the columnindex, you will be locked into the DB-Schema forever.
Another thing to consider is the amount of data you have to consider. You might think its trivial, but the Version2.0 of your application suddenly adds a ProfilePicture to the User table. And now the query that will select 100 Users will suddenly use up several Megabyte of bandwith.
The second thing you should consider is the number of rows you return. SQL is very powerfull at sorting and grouping, so let SQL do his job, and dont move it to the client. Limit the amount of records you return. In most applications it makes no sense to return more then 100 rows to a user at once. You might let the user choose to load more, but make it a choice he has to make.
Finally, monitor your SQL Server. Run a profiler against it, and try to find your worst queries. A SQL Query should not take longer then half a second, if it does, something is most likely messed up (Yes... there are operation that can take much longer, but those should have a reason)
Edit:
Once you found the slow query, look at the execution plan... You will see which parts of the query are expensive, and which parts work well... The Optimizer is also a tool that can be used.
I suggest you consider your queries in terms of I/O first. Disk I/O on my SATA II system is 6Gb/sec. My DDR3 memory bandwidth is 12GB/sec. I can move items in memory 16 times faster than I can retrieve from disk. (Ref Wikipedia and Tom's hardware)
The difference between getting a few columns and all the columns for your 100 rows could be the dfference in getting a single 8K page from disk to getting two or more pages from disk. When the pages are finally in memory moving two columns or all columns to a hash table is faster than any measuring tool I have.
I value the advice of the others on this topic related to database design. The design of narrow indexes, using included columns to make covering indexes, avoiding table or index scans in favor of seeks by using an appropiate WHERE clause, narrow primary keys, etc is the diffenence between having a DBA title and being a DBA.
What are the patterns you use to determine the frequent queries?
How do you select the optimization factors?
What are the types of changes one can make?
This is a nice question, if rather broad (and none the worse for that).
If I understand you, then you're asking how to attack the problem of optimisation starting from scratch.
The first question to ask is: "is there a performance problem?"
If there is no problem, then you're done. This is often the case. Nice.
On the other hand...
Determine Frequent Queries
Logging will get you your frequent queries.
If you're using some kind of data access layer, then it might be simple to add code to log all queries.
It is also a good idea to log when the query was executed and how long each query takes. This can give you an idea of where the problems are.
Also, ask the users which bits annoy them. If a slow response doesn't annoy the user, then it doesn't matter.
Select the optimization factors?
(I may be misunderstanding this part of the question)
You're looking for any patterns in the queries / response times.
These will typically be queries over large tables or queries which join many tables in a single query. ... but if you log response times, you can be guided by those.
Types of changes one can make?
You're specifically asking about optimising tables.
Here are some of the things you can look for:
Denormalisation. This brings several tables together into one wider table, so in stead of your query joining several tables together, you can just read one table. This is a very common and powerful technique. NB. I advise keeping the original normalised tables and building the denormalised table in addition - this way, you're not throwing anything away. How you keep it up to date is another question. You might use triggers on the underlying tables, or run a refresh process periodically.
Normalisation. This is not often considered to be an optimisation process, but it is in 2 cases:
updates. Normalisation makes updates much faster because each update is the smallest it can be (you are updating the smallest - in terms of columns and rows - possible table. This is almost the very definition of normalisation.
Querying a denormalised table to get information which exists on a much smaller (fewer rows) table may be causing a problem. In this case, store the normalised table as well as the denormalised one (see above).
Horizontal partitionning. This means making tables smaller by putting some rows in another, identical table. A common use case is to have all of this month's rows in table ThisMonthSales, and all older rows in table OldSales, where both tables have an identical schema. If most queries are for recent data, this strategy can mean that 99% of all queries are only looking at 1% of the data - a huge performance win.
Vertical partitionning. This is Chopping fields off a table and putting them in a new table which is joinned back to the main table by the primary key. This can be useful for very wide tables (e.g. with dozens of fields), and may possibly help if tables are sparsely populated.
Indeces. I'm not sure if your quesion covers these, but there are plenty of other answers on SO concerning the use of indeces. A good way to find a case for an index is: find a slow query. look at the query plan and find a table scan. Index fields on that table so as to remove the table scan. I can write more on this if required - leave a comment.
You might also like my post on this.
That's difficult to answer without knowing which system you're talking about.
In Oracle, for example, the Enterprise Manager lets you see which queries took up the most time, lets you compare different execution profiles, and lets you analyze queries over a block of time so that you don't add an index that's going to help one query at the expense of every other one you run.
Your question is a bit vague. Which DB platform?
If we are talking about SQL Server:
Use the Dynamic Management Views. Use SQL Profiler. Install the SP2 and the performance dashboard reports.
After determining the most costly queries (i.e. number of times run x cost one one query), examine their execution plans, and look at the sizes of the tables involved, and whether they are predominately Read or Write, or a mixture of both.
If the system is under your full control (apps. and DB) you can often re-write queries that are badly formed (quite a common occurrance), such as deep correlated sub-queries which can often be re-written as derived table joins with a little thought. Otherwise, you options are to create covering non-clustered indexes and ensure that statistics are kept up to date.
For MySQL there is a feature called log slow queries
The rest is based on what kind of data you have and how it is setup.
In SQL server you can use trace to find out how your query is performing. Use ctrl + k or l
For example if u see full table scan happening in a table with large number of records then it probably is not a good query.
A more specific question will definitely fetch you better answers.
If your table is predominantly read, place a clustered index on the table.
My experience is with mainly DB2 and a smattering of Oracle in the early days.
If your DBMS is any good, it will have the ability to collect stats on specific queries and explain the plan it used for extracting the data.
For example, if you have a table (x) with two columns (date and diskusage) and only have an index on date, the query:
select diskusage from x where date = '2008-01-01'
will be very efficient since it can use the index. On the other hand, the query
select date from x where diskusage > 90
would not be so efficient. In the former case, the "explain plan" would tell you that it could use the index. In the latter, it would have said that it had to do a table scan to get the rows (that's basically looking at every row to see if it matches).
Really intelligent DBMS' may also explain what you should do to improve the performance (add an index on diskusage in this case).
As to how to see what queries are being run, you can either collect that from the DBMS (if it allows it) or force everyone to do their queries through stored procedures so that the DBA control what the queries are - that's their job, keeping the DB running efficiently.
indices on PKs and FKs and one thing that always helps PARTITIONING...
1. What are the patterns you use to determine the frequent queries?
Depends on what level you are dealing with the database. If you're a DBA or a have access to the tools, db's like Oracle allow you to run jobs and generate stats/reports over a specified period of time. If you're a developer writing an application against a db, you can just do performance profiling within your app.
2. How do you select the optimization factors?
I try and get a general feel for how the table is being used and the data it contains. I go about with the following questions.
Is it going to be updated a ton and on what fields do updates occur?
Does it have columns with low cardinality?
Is it worth indexing? (tables that are very small can be slowed down if accessed by an index)
How much maintenance/headache is it worth to have it run faster?
Ratio of updates/inserts vs queries?
etc.
3. What are the types of changes one can make?
-- If using Oracle, keep statistics up to date! =)
-- Normalization/De-Normalization either one can improve performance depending on the usage of the table. I almost always normalize and then only if I can in no other practical way make the query faster will de-normalize. A nice way to denormalize for queries and when your situation allows it is to keep the real tables normalized and create a denormalized "table" with a materialized view.
-- Index judiciously. Too many can be bad on many levels. BitMap indexes are great in Oracle as long as you're not updating the column frequently and that column has a low cardinality.
-- Using Index organized tables.
-- Partitioned and sub-partitioned tables and indexes
-- Use stored procedures to reduce round trips by applications, increase security, and enable query optimization without affecting users.
-- Pin tables in memory if appropriate (accessed a lot and fairly small)
-- Device partitioning between index and table database files.
..... the list goes on. =)
Hope this is helpful for you.