What is freezing/unfreezing a layer in neural networks? - tensorflow

I have been playing around with neural networks for quite a while now, and recently came across the terms "freezing" & "unfreezing" the layers before training a neural network while reading about transfer learning & am struggling with understanding their usage.
When is one supposed to use freezing/unfreezing?
Which layers are to freezed/unfreezed? For instance, when I import a pre-trained model & train it on my data, is my entire neural-net except the output layer freezed?
How do I determine if I need to unfreeze?
If so how do I determine which layers to unfreeze & train to improve model performance?

I would just add to the other answer that this is most commonly used with CNNs and the amount of layers that you want to freeze (not train) is "given" by the amount of similarity between the task that you are solving and the original one (the one that the original network is solving).
If the tasks are very similar, let's say that you are using CNN pretrained on imagenet and you just want to add some other "general" objects that the network should recognize then you might get away with training just the dense top of the network.
The more dissimilar the tasks are, the more layers of the original network you will need to unfreeze during the training.

By freezing it means that the layer will not be trained. So, its weights will not be changed.
Why do we need to freeze such layers?
Sometimes we want to have deep enough NN, but we don't have enough time to train it. That's why use pretrained models that already have usefull weights. The good practice is to freeze layers from top to bottom. For examle, you can freeze 10 first layers or etc.
For instance, when I import a pre-trained model & train it on my data, is my entire neural-net except the output layer freezed?
- Yes, that's may be a case. But you can also don't freeze a few layers above the last one.
How do I freeze and unfreeze layers?
- In keras if you want to freeze layers use: layer.trainable = False
And to unfreeze: layer.trainable = True
If so how do I determine which layers to unfreeze & train to improve model performance?
- As I said, the good practice is from top to bottom. You should tune the number of frozen layers by yourself. But take into account that the more unfrozen layers you have, the slower is training.

When training a model while transfer layer, we freeze training of certain layers due to multiple reasons, such as they might have already converged or we want to train the newly added layers to an already pre-trained models. This is a really basic concept of Transfer learning and I suggest you go through this article if you have no idea about transfer learning .

Related

How to best transfer learning using Dopamine for Reinforcement Learning?

I am using Google's Dopamine framework to train a specific reinforcement learning use-case. I am using an auto encoder to pre-train the convolutional layers of the Deep Q Network and then transfer those pre-trained weights in the final network.
To that end, I have created a separate model (in this case an auto-encoder) which I train and save the resulting model and weights.
The DQN model is created using Keras's model sub-classing method and the model used to save the trained convolutional layers weights was build using the Sequential API. My issue is with when trying to load the pre-trained weights to my final DQN model. Based on whether I use the load_model() or load_weights() functionality from Tensorflow's API I get two different overall behaviors of my network and I would like to understand why. Specifically I have the two following scenarios:
Loading the weights with theload_weights() method to the final model. The weights are the weights of the encoder plus one additional layer(added just before saving the weights) to fit the architecture of the final network implemented in dopamine where they are loaded.
First load the saved model with load_model() and then when defining the new model in the __init__() method, extract the relevant layers from the loaded model and then use them for the final model.
Overall, I would expect the two approaches to yield similar results with regards to the average reward achieved per episode , when I use the same pre-trained weights. However the two approaches differ ( 1. yield higher average reward than 2. although using the same pre-trained weights) and I don't understand why.
Furthermore, in order to validate this behavior I have tried loading random weights with the two aforementioned approaches in order to see a change in behavior. In both cases, based on which of the two aforementioned loading methods I am using, I end up with very similar resulting behavior with the respected case when loading the trained weights. It's seems like the pre-trained weights in each respected case have no effect on the overall resulting training behavior. Although, this might be irrelevant to the issue I am trying to investigate here as it might be the case that the pre-trained weights don't offer any benefit overall which is also possible.
Any thoughts and ideas on this would be much appreciated.

Is that a good idea to use transfer learning in real world projects?

SCENARIO
What if my intention is to train for a dataset of medical images and I have chosen a coco pre-trained model.
My Doubts
1 Since I have chosen medical images there is no point of train it on COCO dataset, right? if so what is a possible solution to do the same?
2 Adding more layers to a pre-trained model will screw the entire model? with classes of around 10 plus and 10000's of training datasets?
3 Without train from scratch what are the possible solutions , like fine-tuning the model?
PS - let's assume this scenario is based on deploying the model for business purposes.
Thanks-
Yes, it is a good idea to reuse the Pre-Trained Models or Transfer Learning in Real World Projects, as it saves Computation Time and as the Architectures are proven.
If your use case is to classify the Medical Images, that is, Image Classification, then
Since I have chosen medical images there is no point of train it on
COCO dataset, right? if so what is a possible solution to do the same?
Yes, COCO Dataset is not a good idea for Image Classification as it is efficient for Object Detection. You can reuse VGGNet or ResNet or Inception Net or EfficientNet. For more information, refer TF HUB Modules.
Adding more layers to a pre-trained model will screw the entire model?
with classes of around 10 plus and 10000's of training datasets?
No. We can remove the Top Layer of the Pre-Trained Model and can add our Custom Layers, without affecting the performance of the Pre-Trained Model.
Without train from scratch what are the possible solutions , like
fine-tuning the model?
In addition to using the Pre-Trained Models, you can Tune the Hyper-Parameters of the Model (Custom Layers added by you) using HParams of Tensorboard.

Can I train Keras/TF model layer by layer?

I am looking to train a large face identification network. Resnet or VGG-16/19. TensorFlow 1.14
My question is - if I run out of GPU memory - is it valid strategy to train sets of layers one by one?
For example train 2 cnn and maxpooling layer as one set, then "freeze the weights" somehow and train next set etc..
I know I can train on multi-gpu in tensorflow but what if I want to stick to just one GPU..
The usual approach is to use transfer learning: use a pretrained model and fine-tune it for the task.
For fine-tuning in computer vision, a known approach is re-training only the last couple of layers. See for example:
https://www.learnopencv.com/keras-tutorial-fine-tuning-using-pre-trained-models/
I may be wrong but, even if you freeze your weights, they still need to be loaded into the memory (you need to do whole forward pass in order to compute the loss).
Comments on this are appreciated.

How filters are initialized in convnet

I read a lot of papers on convnets, but there is one thing I don't understand, how the filters in convolutional layer are initialized ?
Because, for examples, in first layer, filters should detect edges etc..
But if it randomly init, it could not be accurate ? Same for next layer and high-level features.
And an other question, what are the range of the value in those filters ?
Many thanks to you!
You can either initialize the filters randomly or pretrain them on some other data set.
Some references:
http://deeplearning.net/tutorial/lenet.html:
Notice that a randomly initialized filter acts very much like an edge
detector!
Note that we use the same weight initialization formula as with the
MLP. Weights are sampled randomly from a uniform distribution in the
range [-1/fan-in, 1/fan-in], where fan-in is the number of inputs to a
hidden unit. For MLPs, this was the number of units in the layer
below. For CNNs however, we have to take into account the number of
input feature maps and the size of the receptive fields.
http://cs231n.github.io/transfer-learning/ :
Transfer Learning
In practice, very few people train an entire Convolutional Network
from scratch (with random initialization), because it is relatively
rare to have a dataset of sufficient size. Instead, it is common to
pretrain a ConvNet on a very large dataset (e.g. ImageNet, which
contains 1.2 million images with 1000 categories), and then use the
ConvNet either as an initialization or a fixed feature extractor for
the task of interest. The three major Transfer Learning scenarios look
as follows:
ConvNet as fixed feature extractor. Take a ConvNet pretrained on ImageNet, remove the last fully-connected layer (this layer's outputs
are the 1000 class scores for a different task like ImageNet), then
treat the rest of the ConvNet as a fixed feature extractor for the new
dataset. In an AlexNet, this would compute a 4096-D vector for every
image that contains the activations of the hidden layer immediately
before the classifier. We call these features CNN codes. It is
important for performance that these codes are ReLUd (i.e. thresholded
at zero) if they were also thresholded during the training of the
ConvNet on ImageNet (as is usually the case). Once you extract the
4096-D codes for all images, train a linear classifier (e.g. Linear
SVM or Softmax classifier) for the new dataset.
Fine-tuning the ConvNet. The second strategy is to not only replace and retrain the classifier on top of the ConvNet on the new
dataset, but to also fine-tune the weights of the pretrained network
by continuing the backpropagation. It is possible to fine-tune all the
layers of the ConvNet, or it's possible to keep some of the earlier
layers fixed (due to overfitting concerns) and only fine-tune some
higher-level portion of the network. This is motivated by the
observation that the earlier features of a ConvNet contain more
generic features (e.g. edge detectors or color blob detectors) that
should be useful to many tasks, but later layers of the ConvNet
becomes progressively more specific to the details of the classes
contained in the original dataset. In case of ImageNet for example,
which contains many dog breeds, a significant portion of the
representational power of the ConvNet may be devoted to features that
are specific to differentiating between dog breeds.
Pretrained models. Since modern ConvNets take 2-3 weeks to train across multiple GPUs on ImageNet, it is common to see people release
their final ConvNet checkpoints for the benefit of others who can use
the networks for fine-tuning. For example, the Caffe library has a
Model Zoo where people
share their network weights.
When and how to fine-tune? How do you decide what type of transfer learning you should perform on a new dataset? This is a function of
several factors, but the two most important ones are the size of the
new dataset (small or big), and its similarity to the original dataset
(e.g. ImageNet-like in terms of the content of images and the classes,
or very different, such as microscope images). Keeping in mind that
ConvNet features are more generic in early layers and more
original-dataset-specific in later layers, here are some common rules
of thumb for navigating the 4 major scenarios:
New dataset is small and similar to original dataset. Since the data is small, it is not a good idea to fine-tune the ConvNet due to
overfitting concerns. Since the data is similar to the original data,
we expect higher-level features in the ConvNet to be relevant to this
dataset as well. Hence, the best idea might be to train a linear
classifier on the CNN codes.
New dataset is large and similar to the original dataset. Since we have more data, we can have more confidence that we won't overfit
if we were to try to fine-tune through the full network.
New dataset is small but very different from the original dataset. Since the data is small, it is likely best to only train a
linear classifier. Since the dataset is very different, it might not
be best to train the classifier form the top of the network, which
contains more dataset-specific features. Instead, it might work better
to train the SVM classifier from activations somewhere earlier in the
network.
New dataset is large and very different from the original dataset. Since the dataset is very large, we may expect that we can
afford to train a ConvNet from scratch. However, in practice it is
very often still beneficial to initialize with weights from a
pretrained model. In this case, we would have enough data and
confidence to fine-tune through the entire network.
Practical advice. There are a few additional things to keep in mind when performing Transfer Learning:
Constraints from pretrained models. Note that if you wish to use a pretrained network, you may be slightly constrained in terms of the
architecture you can use for your new dataset. For example, you can't
arbitrarily take out Conv layers from the pretrained network. However,
some changes are straight-forward: Due to parameter sharing, you can
easily run a pretrained network on images of different spatial size.
This is clearly evident in the case of Conv/Pool layers because their
forward function is independent of the input volume spatial size (as
long as the strides "fit"). In case of FC layers, this still holds
true because FC layers can be converted to a Convolutional Layer: For
example, in an AlexNet, the final pooling volume before the first FC
layer is of size [6x6x512]. Therefore, the FC layer looking at this
volume is equivalent to having a Convolutional Layer that has
receptive field size 6x6, and is applied with padding of 0.
Learning rates. It's common to use a smaller learning rate for ConvNet weights that are being fine-tuned, in comparison to the
(randomly-initialized) weights for the new linear classifier that
computes the class scores of your new dataset. This is because we
expect that the ConvNet weights are relatively good, so we don't wish
to distort them too quickly and too much (especially while the new
Linear Classifier above them is being trained from random
initialization).
Additional References
CNN Features off-the-shelf: an Astounding Baseline for Recognition trains SVMs on features
from ImageNet-pretrained ConvNet and reports several state of the art
results.
DeCAF reported similar findings in 2013. The framework in this paper (DeCAF) was a Python-based precursor to the C++ Caffe library.
How transferable are features in deep neural networks? studies the transfer
learning performance in detail, including some unintuitive findings
about layer co-adaptations.

Prevention of overfitting in convolutional layers of a CNN

I'm using TensorFlow to train a Convolutional Neural Network (CNN) for a sign language application. The CNN has to classify 27 different labels, so unsurprisingly, a major problem has been addressing overfitting. I've taken several steps to accomplish this:
I've collected a large amount of high-quality training data (over 5000 samples per label).
I've built a reasonably sophisticated pre-processing stage to help maximize invariance to things like lighting conditions.
I'm using dropout on the fully-connected layers.
I'm applying L2 regularization to the fully-connected parameters.
I've done extensive hyper-parameter optimization (to the extent possible given HW and time limitations) to identify the simplest model that can achieve close to 0% loss on training data.
Unfortunately, even after all these steps, I'm finding that I can't achieve much better that about 3% test error. (It's not terrible, but for the application to be viable, I'll need to improve that substantially.)
I suspect that the source of the overfitting lies in the convolutional layers since I'm not taking any explicit steps there to regularize (besides keeping the layers as small as possible). But based on examples provided with TensorFlow, it doesn't appear that regularization or dropout is typically applied to convolutional layers.
The only approach I've found online that explicitly deals with prevention of overfitting in convolutional layers is a fairly new approach called Stochastic Pooling. Unfortunately, it appears that there is no implementation for this in TensorFlow, at least not yet.
So in short, is there a recommended approach to prevent overfitting in convolutional layers that can be achieved in TensorFlow? Or will it be necessary to create a custom pooling operator to support the Stochastic Pooling approach?
Thanks for any guidance!
How can I fight overfitting?
Get more data (or data augmentation)
Dropout (see paper, explanation, dropout for cnns)
DropConnect
Regularization (see my masters thesis, page 85 for examples)
Feature scale clipping
Global average pooling
Make network smaller
Early stopping
How can I improve my CNN?
Thoma, Martin. "Analysis and Optimization of Convolutional Neural Network Architectures." arXiv preprint arXiv:1707.09725 (2017).
See chapter 2.5 for analysis techniques. As written in the beginning of that chapter, you can usually do the following:
(I1) Change the problem definition (e.g., the classes which are to be distinguished)
(I2) Get more training data
(I3) Clean the training data
(I4) Change the preprocessing (see Appendix B.1)
(I5) Augment the training data set (see Appendix B.2)
(I6) Change the training setup (see Appendices B.3 to B.5)
(I7) Change the model (see Appendices B.6 and B.7)
Misc
The CNN has to classify 27 different labels, so unsurprisingly, a major problem has been addressing overfitting.
I don't understand how this is connected. You can have hundreds of labels without a problem of overfitting.