What is the math behind the min function in Geogebra? - min

So as of yet, I am not profficient in programming.
I am writing a paper in mathematics and obtained different results from the GeoGebra min function and algebraical methods.
I am sure that the algebraical methods are correct, but I really want to know why the min function was faulty.
The result from the algebra was an interval between 1010 and 1011.
From GeoGebra I got a single point as a solution (1010.15898).
If you could explain to me why GeoGebra ommits all of these other solutions, I would be very thankful.
I would also appreciate if someone could direct me to the math behind the function, so I could include it in my paper and discuss its' relevance.
Thanks in advance!

GeoGebra is using a modification of the (local) optimization algorithm given in Richard Brent, Algorithms For Minimization Without Derivatives, Prentice-Hall, Inc. 1973.
See the source code for more information.

Related

Setting initial values for non-linear parameters via tabuSearch

I'm trying to fit the lppl model to KLSE index to predict the most probable crash time. Many papers suggested tabuSearch to identify the initial value for non-linear parameters but none of them publish their code. I have tried to fit the mentioned index with the help of NLS And Log-Periodic Power Law (LPPL) in R. But the obtained error and p values are not significant. I believe that the initial values are not accurate. Can anyone help me on how to find the proper initial values?
library(tseries)
library(zoo)
ts<-get.hist.quote(instrument="^KLSE",start="2003-04-18",end="2008-01-30",quote="Close",provider="yahoo",origin="1970-01-01",compression="d",retclass="zoo")
df<-data.frame(ts)
df<-data.frame(Date=as.Date(rownames(df)),Y=df$Close)
df<-df[!is.na(df$Y),]
library(minpack.lm)
library(ggplot2)
df$days<-as.numeric(df$Date-df[1,]$Date)
f<-function(pars,xx){pars$a + (pars$tc - xx)^pars$m *(pars$b+ pars$c * cos(pars$omega*log(pars$tc - xx) + pars$phi))}
resids<-function(p,observed,xx){df$Y-f(p,xx)}
nls.out <- nls.lm(par=list(a=600,b=-266,tc=3000, m=.5,omega=7.8,phi=-4,c=-14),fn = resids, observed = df$Y, xx = df$days, control= nls.lm.control (maxiter =1024, ftol=1e-6, maxfev=1e6))
par<-nls.out$par
nls.final<-nls(Y~(a+(tc-days)^m*(b+c*cos(omega*log(tc-days)+phi))),data=df,start=par,algorithm="plinear",control=nls.control(maxiter=10024,minFactor=1e-8))
summary(nls.final)
I would look at some of the newer research on this topic, there is a good trig modification that will practically guarantee a singular optimization. Additionally, you can use r's built in linear equation solver, to find the linearizable parameters, ergo you will only need to optimize in 3 dimensions. The link below should get you started. I would cite recent literature and personal experience to strongly advise against a tabu search.
https://www.ethz.ch/content/dam/ethz/special-interest/mtec/chair-of-entrepreneurial-risks-dam/documents/dissertation/master%20thesis/MAS_final_Tuncay.pdf

Generating Artificial Test Clusters

Most authors generated their test clusters using Milligan's algorithm (well cited paper,Milligan, G.: An algorithm for creating artificial test clusters. Psychometric 50 (1985) 123–127). And A public domain implementation of this algorithm is available from Dave Dubin (Dubin, D.: clusgen.c. http://alexia.lis.uiuc.edu/ ̃dubin/ (1996)). However, this link is not available. Could you please tell me if there is any other implementation of this algorithm or other ways to generate artificial test clusters? Thanks in advance!
You may want to consider using MixSim in R or CARP in C which is considered to be some sort of a modern gold standard for assessing clustering. CARP appears to be more flexible. You can get the R package from CRAN, and the C package from MLOSS
Hope this helps!

Maximum Likelihood Estimation of a log function with sevaral parameters

I am trying to find out the parameters for the function below:
$$
\log L(\alpha,\beta,v) = v/\beta(e^{-\beta T} -1) + \alpha/\beta \sum_{i=1}^{n}(e^{-\beta(T-t_i)} -1) + \sum_{i=1}^{N}log(v e^{-\beta t_i} + \alpha \sum_{j=1}^{jmax(t_i)} e^{-\beta(t_i - t_j)}).
$$
However, the conventional methods like fmin, fminsearch are not converging properly. Any suggestions on any other methods or open libraries which I can use?
I was trying CVXPY, but they don't support the division by a variable in the expression.
The problem may not be convex (I have not verified this but it could be why CVXPY refused it). We don't have the data so we cannot try things out, but I can give some general advice:
Provide exact gradients (and 2nd derivatives if needed) or use a modeling system with automatic differentiation. Especially first derivatives should be preferably quite precise. With finite differences you may lose half the precision.
Provide a good starting point. May be using an alternative estimation method.
Some solvers can use bounds on the variables to restrict the feasible region where functions will be evaluated. This can be used to restrict the search to interesting areas only and also to protect operations like division and log functions.

Evaluate Formal tools

What are all the factors one should consider in order to compare 3 formal verification tools?
Eg: Jaspergold, Onespin, Incisive.
From my little research, Jaspergold comes on top. But i want to do it myself on a project.
I have noted down some points such as
1.Supported languages(vhdl, sv, verilog, sva, psl,etc)
2.GUI
3.Capability(how much big design can they handle)
4.Number of Evaluation cycles
5.Performance(How fast they find proof or counter example)
With what other features can i extend this list?
Thanks!

Quick divisibility check in ZX81 BASIC

Since many of the Project Euler problems require you to do a divisibility check for quite a number of times, I've been trying to figure out the fastest way to perform this task in ZX81 BASIC.
So far I've compared (N/D) to INT(N/D) to check, whether N is dividable by D or not.
I have been thinking about doing the test in Z80 machine code, I haven't yet figured out how to use the variables in the BASIC in the machine code.
How can it be achieved?
You can do this very fast in machine code by subtracting repeatedly. Basically you have a procedure like:
set accumulator to N
subtract D
if carry flag is set then it is not divisible
if zero flag is set then it is divisible
otherwise repeat subtraction until one of the above occurs
The 8 bit version would be something like:
DIVISIBLE_TEST:
LD B,10
LD A,100
DIVISIBLE_TEST_LOOP:
SUB B
JR C, $END_DIVISIBLE_TEST
JR Z, $END_DIVISIBLE_TEST
JR $DIVISIBLE_TEST_LOOP
END_DIVISIBLE_TEST:
LD B,A
LD C,0
RET
Now, you can call from basic using USR. What USR returns is whatever's in the BC register pair, so you would probably want to do something like:
REM poke the memory addresses with the operands to load the registers
POKE X+1, D
POKE X+3, N
LET r = USR X
IF r = 0 THEN GOTO isdivisible
IF r <> 0 THEN GOTO isnotdivisible
This is an introduction I wrote to Z80 which should help you figure this out. This will explain the flags if you're not familiar with them.
There's a load more links to good Z80 stuff from the main site although it is Spectrum rather than ZX81 focused.
A 16 bit version would be quite similar but using register pair operations. If you need to go beyond 16 bits it would get a bit more convoluted.
How you load this is up to you - but the traditional method is using DATA statements and POKEs. You may prefer to have an assembler figure out the machine code for you though!
Your existing solution may be good enough. Only replace it with something faster if you find it to be a bottleneck in profiling.
(Said with a straight face, of course.)
And anyway, on the ZX81 you can just switch to FAST mode.
Don't know if RANDOMIZE USR is available in ZX81 but I think it can be used to call routines in assembly. To pass arguments you might need to use POKE to set some fixed memory locations before executing RANDOMIZE USR.
I remember to find a list of routines implemented in the ROM to support the ZX Basic. I'm sure there are a few to perform floating operation.
An alternative to floating point is to use fixed point math. It's a lot faster in these kind of situations where there is no math coprocessor.
You also might find more information in Sinclair User issues. They published some articles related to programming in the ZX Spectrum
You should place the values in some pre-known memory locations, first. Then use the same locations from within Z80 assembler. There is no parameter passing between the two.
This is based on what I (still) remember of ZX Spectrum 48. Good luck, but you might consider upgrading your hw. ;/
The problem with Z80 machine code is that it has no floating point ops (and no integer divide or multiply, for that matter). Implementing your own FP library in Z80 assembler is not trivial. Of course, you can use the built-in BASIC routines, but then you may as well just stick with BASIC.