I want to separate my user-defined functions from the main CmakeLists.txt so they are not in the way of my stuff.
I work in CLion primarily and want to have syntax highlight and code completion, which CLion provides for CMake.
How do I do this?
First you add another file alongside with your main CMakeLists.txt and name it something like: myfunctions.cmake.
*.cmake extension is recognized by CLion and enables CMake syntax highlight and code completion.
Then in your CMakeLists.txt you add line:
include(myfunctions.cmake)
Now you can use your user-defined functions in your main and all derived (from add_subdirectory) CMakeLists.txt files. Also you'll get CLion code completion for your user-defined functions as well (it works in CLion 2020.1, but I don't know about older versions)
Related
It seems like CMake is fairly entrenched in its view that there should be one, and only one, CMAKE_CXX_COMPILER for all C++ source files. I can't find a way to override this on a per-target basis. This makes a mix of host-and-cross compiling in a single CMakeLists.txt very difficult with the built-in CMake facilities.
So, my question is: what's the best way to use multiple compilers for the same language (i.e. C++)?
It's impossible to do this with CMake.
CMake only keeps one set of compiler properties which is shared by all targets in a CMakeLists.txt file. If you want to use two compilers, you need to run CMake twice. This is even true for e.g. building 32bit and 64bit binaries from the same compiler toolchain.
The quick-and-dirty way around this is using custom commands. But then you end up with what are basically glorified shell-scripts, which is probably not what you want.
The clean solution is: Don't put them in the same CMakeLists.txt! You can't link between different architectures anyway, so there is no need for them to be in the same file. You may reduce redundancies by refactoring common parts of the CMake scripts into separate files and include() them.
The main disadvantage here is that you lose the ability to build with a single command, but you can solve that by writing a wrapper in your favorite scripting language that takes care of calling the different CMake-makefiles.
You might want to look at ExternalProject:
http://www.kitware.com/media/html/BuildingExternalProjectsWithCMake2.8.html
Not impossible as the top answer suggests. I have the same problem as OP. I have some sources for cross compiling for a raspberry pi pico, and then some unit tests that I am running on my host system.
To make this work, I'm using the very shameful "set" to override the compiler in the CMakeLists.txt for my test folder. Works great.
if(DEFINED ENV{HOST_CXX_COMPILER})
set(CMAKE_CXX_COMPILER $ENV{HOST_CXX_COMPILER})
else()
set(CMAKE_CXX_COMPILER "g++")
endif()
set(CMAKE_CXX_FLAGS "")
The cmake devs/community seems very against using set to change the compiler since for some reason. They assume that you need to use one compiler for the entire project which is an incorrect assumption for embedded systems projects.
My solution above works, and fits the philosophy I think. Users can still change their chosen compiler via environment variables, if it's not set then I do assume g++. set only changes variables for the current scope, so this doesn't affect the rest of the project.
To extend #Bill Hoffman's answer:
Build your project as a super-build, by using some kind of template like the one here https://github.com/Sarcasm/cmake-superbuild
which will configure both the dependencies and your project as an ExternalProject (standalone cmake configure/build/install environment).
What is the best way to do additional stuff for all (binary) targets?
Examples:
I want to check that each library name follows a pattern.
I want to sign each executable.
I dont what the C/C++ developers to use nonstandard commands (like add_library2). I want them to use and learn the official CMake functions, but have them do additonal, project specific, stuff.
The built-in CMake functions add_library and add_executable can be overidden by defining CMake functions of the same name. E.g., to automatically sign all added executables add the following code:
function (add_executable _name)
_add_executable(${ARGV})
if (TARGET ${_name})
add_custom_command(TARGET ${_name} POST_BUILD
COMMAND sign_executable $<TARGET_FILE:${_name}>)
endif()
endfunction()
The original built-in add_executable can be invoked by prefixing it with an underscore character. The same pattern can be applied to add_library to check the name of the library.
You can overwrite any CMake command/function to extend its functionality, but please
Call Things by their Names
I strongly advocate to call the things by their names and not doing things implicitly. It will be easier for everybody using/maintaining/debugging your CMake based project.
If you want to sign your executable - and that's probably even platform specific - you create a function like add_post_build_step_sign_executable() which would add the appropriate post build steps:
add_executable(MyExe main.cpp)
if (WIN32)
add_post_build_step_sign_executable(MyExe)
endif()
And if you have to repeat yourself too often put that code snippet into a function like my_project_add_signed_executable() itself. It could still have the same parameter syntax as CMake's add_executable() command.
Runtime Checks vs. Static Code Analysis
Regarding library naming checks, I see this more like checking against your project's CMake script coding styles and would not use runtime checks for this.
For example you could use something like cmake-lint or your own external script to check for conformity.
References
How to frame the concept behind CMake?
cmake: get add_library() names
How to ensure consistent coding style for CMakeLists.txt and FindXXX.cmake
I am rather new to CMake, starting off for the first time with a larger project consisting of many subprojects.
For particular reasons (described below for the curious) I already have a set of include files that contain info about the source files needed for each CMake target (lib or exe) – and, for now, I prefer to (re)use these files (reason also described below)
Writing a function to parse these files and add their content as source files to the targets was a surprisingly easy task.
But – now the Problem:
Obviously I want to have each targets CMakeLists.txt depend on the particular include file, that generates the list of source files, so that changes on the include file will be detected as if it were changes to CMakeLists.txt itself, but I simply can’t find any references on how to accomplish that.
N.B.: I found AddFileDependencies but that is for adding dependencies on source files, not the CMakeLists.txt. However, CMake itself can figure out dependencies to included .cmake file somehow, so I figured, it should be possible to do somehow.
Background for the curious:
For this project (quite a number of libraries used by quite a number of executable targets, all organized as subprojects) I was using QMake (without actually using Qt itself) for setting up makefiles. Doing so I was able to use Qt Creator while still being able to generate Visual Studio Solution/Project files automagically. We’re also still in progress of evaluating different IDEs and the choice has not been made yet. But the most important reason to use a generator like QMake / CMake was not being forced to set up the VS files for all these subprojects manually.
Although I needed to trick QMake sometimes to do what I wanted to, things went quite well - even for the VS solution - except for one thing: Visual Studio messes up dependencies on Flex/Bison and other files using custom build rules. It keeps recompiling the Flex/Bison/other files saying „command line changed“ – which I gave up trying to fix.
For this reason I thougt, I’d try CMake as a generator instead, which looks very promising so far – although not having builtin precompiled header support in CMake is somewhat ridiculous these days (off topic, I know).
Since Qt Creators CMake support is by far not as good as the support for QMake projects, I firgured, using the approach of parsing the .pri files containing the source file list would enable me using QMake and CMake side by side – especially since the remaining project settings are rather less complicated than on most open source projects.
There's a nice trick which does exactly what you need. It's based on the idea I found in the git-revision module of #rpavlik see this so question
This is the overall idea:
Create a dummy timestamp file
Add a custom command which touches the timestamp whenever the input .pri file changes
include the timestamp file in your CMakeLists.txt
A possible implementation:
set(input_pri_file <path-to-the-input-pri-file>)
set(timestamp_file ${CMAKE_CURRENT_BINARY_DIR}/timestamp.cmake)
add_custom_command(
OUTPUT ${timestamp_file}
COMMAND ${CMAKE_COMMAND} -E touch ${timestamp_file}
MAIN_DEPENDENCY ${input_pri_file}
VERBATIM
COMMENT "Updating timestamp.cmake"
)
if(NOT EXISTS "${timestamp_file}")
file(WRITE ${timestamp_file} "") # create initial empty file
endif()
include(${timestamp_file})
# create the file list from input_pri_file
....
# use the file list
add_executable(main ${filelist})
Here's what happens when the .pri file changes:
the change triggers the execution of the custom command
which updates the timestamp
because the CMakeLists includes the timestamp it is dependent on it
so updating the timestamp triggers a re-configuration of the CMakeLists.txt
I use the configure_file() if I have some input that should retrigger CMake's configuration process. See e.g. How to make CMake reconfiguration depend on custom file? and configure_file()'s unit test
So in your case it would look something like:
configure_file(SomeInput.pri ${CMAKE_CURRENT_BINARY_DIR}/SomeInput.pri)
Then you use ${CMAKE_CURRENT_BINARY_DIR}/SomeInput.pri to generate the sources. Just make sure you do not add COPYONLY, because then configuration won't retrigger on changes of SomeInput.pri.
EDIT: Alternatively use - a relative new addition - the CMAKE_CONFIGURE_DEPENDS directory property.
Over time my CMakeLists.txt files have grown by the addition of dozens of self functions and definitions. I would like to split these into their own file so as to simplify reuse in other projects and make the CMakeLists.txt file more readable.
currently I use a superdir CMakeLists.txt but I feel there has to be a better solution then that... something similar to \input in latex? or include in c++ for that matter
Ideas?
CMake has its own include command which allows you to bring additional CMake code into play, with variables in the included file still in the scope of the including CMakeList file (unlike add_subdirectory for example). Its effect should be as though you had pasted the contents of the included file into the CMakeList file at the point of the include.
When I add source files to a target they are automatically recognized if they are from the C/C++ file extensions. What I want to accomplish is that if I put in the sources xxx.foo all the .foo files are processed with a predefined set of compiler commands.
I know that the way to go is using add_custom_command but all the examples I have seen are using fixed filenames like the ones used here http://www.cmake.org/Wiki/CMake_FAQ#How_can_I_generate_a_source_file_during_the_build.3F
Any ideas about the right approach to the problem?
One way to approach the problem is to replace the plain CMake add_executable and add_library commands with wrapper functions or macros which do special processing of the files with the .foo extension and pass the other arguments and options through to the standard add_executable or add_library commands. E.g.:
set (FOO_SRCS "main.cpp" "module.cpp" "xxx.foo" "yyy.foo")
foo_add_executable(fooexec ${FOO_SRCS})
foo_add_library(foolib ${FOO_SRCS})
The FindCUDA standard CMake module takes that approach. It adds CUDA_ADD_EXECUTABLE and CUDA_ADD_LIBRARY commands which feed source files with the extension .cu to the NVIDIA C compiler.