(Interface, Class) Kotlin: Expecting member declaration - kotlin

Class Aim: read review point and comment, ensure that point is within 0-5
class LimitedReview(val point:Int, val comment:String):Review {
if (point<0){
point=0
}
if (point>5){
point = 5
}
override fun stars(): Int =point
override fun info(): String =comment
}
interface Review{
fun stars():Int
fun info():String
}
Error:(2, 5) Kotlin: Expecting member declaration
Error:(2, 17) Kotlin: Conflicting overloads: public final fun (): Unit defined in LimitedReview, public final fun (): Unit defined in LimitedReview
Error:(2, 17) Kotlin: Function declaration must have a name
may i know how to change my code?
which topic should i learn to avoid the same error again?
Thanks!

The property you have in the primary constructor of the class will assign the value that you call the constructor with to the point property directly, when your class is created, and you can't modify it any more.
Basically, this code:
class LimitedReview(val point: Int)
Is the same as this:
class LimitedReview(point: Int) {
val point: Int = point // ctor param to property
}
If you want to perform logic before assigning the value to the property, you have to move the property outside the constructor, and initialize it manually.
This can be done in an initializer block, if you have complex logic for it:
class LimitedReview(point: Int) {
val point: Int
init {
if (point < 0) {
this.point = 0
} else if (point > 5) {
this.point = 5
} else {
this.point = point
}
}
}
Or if you can fit it into a single expression (coerceIn comes in handy here), then inline with the property declaration:
class LimitedReview(point: Int) {
val point: Int = point.coerceIn(0..5)
}

Related

Kotlin: How to define a variable whose type depends on the input?

I have a function in Kotlin which takes a particular string as input. Depending on the input, I want to create a variable of a specific type and do some computations on it.
For example,
fun compute(input: String): Any{
if(input=="2d"){
var point: Point2D;// Points2D - x: int, y: int
//initilize and do some computations
return point.findDistanceFromOrigin()
}else if(input=="2d-1"){
var point: Point2DWithP1AsOrigin;// Point2DWithP1AsOrigin - x: int, y: int
//initilize and do some computations
return point.findDistanceFromOrigin()
}else if(input=="2d-2"){
var point: Point2DWithP2AsOrigin;
//initilize and do some computations
return point.findDistanceFromOrigin()
}
.
.
.
}
You can see in the above example, I want to initilize the type of point depending on the input and do computation and return.
All the if-else conditions have the same code except for the definition of the variable. How can I put all this in a single block with something like this:
var point: if(input=="2d) Point2D::class else if(input=="2d-1") Point2DWithP1AsOrigin::class.....
How can I do that?
You could do something like this
fun compute(input: String): Any{
val point: MyPoint = when(input) {
"2d" -> Point2D()
"2d-1" -> Point2DWithP1AsOrigin()
"2d-2" -> Point2DWithP2AsOrigin()
else -> Point2D() //fallback is necessary
}
//initilize and do some computations
return point.findDistanceFromOrigin()
}
But then it's essential that all those classes share the same interface. Because they need to have the same methods in order to do the same operations on them.
For example like this:
class Point2D : MyPoint {
override fun findDistanceFromOrigin() = 5
}
class Point2DWithP1AsOrigin : MyPoint{
override fun findDistanceFromOrigin() = 6
}
class Point2DWithP2AsOrigin : MyPoint{
override fun findDistanceFromOrigin() = 7
}
interface MyPoint {
fun findDistanceFromOrigin() : Int
}
You can store constructor references and then invoke required one
fun main() {
val constructors = mapOf(
"2d" to ::Point2D,
"2d-1" to ::Point2DWithP1AsOrigin,
"2d-2" to ::Point2DWithP2AsOrigin,
)
val type = "2d-2"
val constructor = constructors[type] ?: throw IllegalArgumentException("$type not supported")
val point = constructor()
println(point::class)
}
Output
class Point2DWithP2AsOrigin

Kotlin adapter pattern: Duplicate method name error on getter function

Just simple kotlin code to demo Adapter Pattern in Gang of Four Design Pattern. I have a presentation today about this but i can't done it. So sad. I don't want to add much details but they don't allow me to post without much details.
Exception:
Exception in thread "main" java.lang.ClassFormatError: Duplicate method name "getRadius" with signature "()I" in class file RoundHole
at java.lang.ClassLoader.defineClass1 (ClassLoader.java:-2)
at java.lang.ClassLoader.defineClass (ClassLoader.java:756)
at java.security.SecureClassLoader.defineClass (SecureClassLoader.java:142)
Code:
interface WorkingWithRound {
fun getRadius(): Int
}
open class RoundPeg(val radius: Int = 0): WorkingWithRound {
override fun getRadius() = radius
}
class RoundHole(val radius: Int = 0): WorkingWithRound {
override fun getRadius() = radius
fun fit(peg: RoundPeg) {
println(getRadius() >= peg.getRadius())
}
}
class SquarePeg(val width: Int = 0)
class SquarePegAdapter(val speg: SquarePeg): RoundPeg() {
override fun getRadius() = (speg.width / 2 * 1.4).toInt()
}
fun main() {
val hole = RoundHole(5)
val rpeg = RoundPeg(5)
hole.fit(rpeg)
val small_sqpeg = SquarePeg(5)
val large_sqpeg = SquarePeg(10)
//hole.fit(small_sqpeg) // this won't compile (incompatible types)
val small_sqpeg_adapter = SquarePegAdapter(small_sqpeg)
val large_sqpeg_adapter = SquarePegAdapter(large_sqpeg)
hole.fit(small_sqpeg_adapter) // true
hole.fit(large_sqpeg_adapter) // false
}
Kotlin generates getter method for instance variables, hence the error. Couple of options to fix the issue
Make radius variable private
open class RoundPeg(private val radius: Int = 0): WorkingWithRound
Mark radius with #JvmField to instruct compiler not to generate any getter
class RoundHole(#JvmField val radius: Int = 0): WorkingWithRound
I think this would be simpler (as well as avoiding the compilation problems) if the interface defined a property, rather than a getter method:
interface WorkingWithRound {
val radius: Int
}
That compiles down to pretty much the same bytecode; but the intent is clearer, and it can then be implemented directly in the constructors:
open class RoundPeg(override val radius: Int = 0): WorkingWithRound
class RoundHole(override val radius: Int = 0): WorkingWithRound {
fun fit(peg: RoundPeg) {
println(radius >= peg.radius)
}
}
The SquarePegAdapter can be simplified, as it no longer needs to store the speg value, but can simply use it as an initialiser for the property:
class SquarePegAdapter(speg: SquarePeg): RoundPeg() {
override val radius = (speg.width / 2 * 1.4).toInt()
}
And the rest of the code needs no changes.

I have a question about generic in kotlin

I got an error. Like this :
Error 1 : Platform declaration clash: The following declarations have the same JVM signature (getData()Ljava/lang/Object;):
fun (): I defined in typeErasure2
fun getData(): I defined in typeErasure2
Error 2 : Platform declaration clash: The following declarations have the same JVM signature (getData()Ljava/lang/Object;):
fun (): I defined in typeErasure2
fun getData(): I defined in typeErasure2
fun main(args : Array<String>){
var te = typeErasure("Jennie")
println(te.getData())
var te2 = typeErasure2("Sam")
println(te2.getData())
}
class typeErasure<I>(name : I){
private val data : I = name
fun getData() : I = data
}
class typeErasure2<I>(name : I){
val data : I = name // error 1
fun getData() : I = data // error 2
}
when I use the private keyword the program can run, otherwise it will get an error. anyone can explain to me? :)
This has nothing to do with generics. The problem with your code is that
public fun getData(): I
Is an accesor for "data". But when "data" is a public field, then the accesor is redundant. So when you do:
val someValue = myObject.data
Then the compiler cannot tell if it should use the accessor getData() or it should just point to the field directly.
When getData is private, then the compiler clearly knows that it can't use it so then it will point to the field directly.
class typeErasure2<I>(name : I){
val data : I = name
fun getData() : I = data
}
fun main() {
val obj = typeErasure2<Int>(123)
println(obj.data) // <--- Ask yourself, what does this line do exactly?
}
class typeErasure2<I>(name : I){
val data : I = name
private fun getData() : I = data
}
fun main() {
val obj = typeErasure2<Int>(123)
println(obj.data) // <--- Here it is clear
// it is not the "getData" because that one is private,
// so it must be the public field "data" you are pointing to
}
Kotlin's logic of properties differ slightly from Java's fields.
Whenever you declare any variable in class, its getter and setters are automatically generated, and they can be customized with get() or set {} after it.
Declaring getVariable() manually will result in platform clash, as getter is already defined for the field in the variable declaration and you are creating function with the same name as well.
You can use #JvmField annotation to instruct the compiler to not generate any getter or setter for the field.
#JvmField
val data: I = name
fun getData(): I = data

Clean way to access outer class by the implementing delegate class

I was thinking about such case (accessing outer class which uses current class to implement some stuff):
interface Does {
fun doStuff()
}
class ReallyDoes: Does {
var whoShouldReallyDo: Does? = null
override fun doStuff() {
println("Doing stuff instead of $whoShouldReallyDo")
}
}
class MakesOtherDo private constructor(other: Does, hax: Int = 42): Does by other {
constructor(other: ReallyDoes): this(other.also { it.whoShouldReallyDo = this }, 42)
}
fun main(args: Array<String>) {
val worker = ReallyDoes()
val boss = MakesOtherDo(other = worker)
boss.doStuff()
}
Expected output:
Doing stuff instead of MakesOtherDo#28a418fc
But can't do that, because of error:
Error:(15, 79) Cannot access '' before superclass constructor
has been called
Which targets this statement: other.also { it.whoShouldReallyDo = this }
How can I (if at all) fix above implementation?
The reason for the error is other.also { ... = this } expression accesses this of type MakeOtherDo and is also used as argument to MakeOtherDo constructor. Hence, this will be accessed as part of MakeOtherDo (unary) constructor before this has been initialized as an instance of Does (super)class.
Since the assignment does not affect the initialization of the super class, you can executed it in the constructor of MakesOtherDo after the super class has been initialized.
class MakesOtherDo private constructor(other: Does, hax: Int = 42): Does by other {
constructor(other: ReallyDoes): this(other, 42) {
other.also { it.whoShouldReallyDo = this }
}
}
It took me a few minutes to decipher what you were doing above, and really the problem has nothing to do with delegates. You can simplify it down to this:
class Wrapper(var any: Any? = null)
class Test(val wrapper: Wrapper) {
constructor(): this(Wrapper(this)) // Cannot access "<this>" before superclass constructor has been called
}
The concept of "this" doesn't exist yet when we're still generating arguments for its constructor. You just need to move the assignment into the block of the constructor, which is code that's run after this becomes available:
class Test(val wrapper: Wrapper) {
constructor(): this(Wrapper()){
wrapper.any = this
}
}
Or in the case of your example:
constructor(other: ReallyDoes): this(other, 42){
other.whoShouldReallyDo = this
}

How do I create an enum from an Int in Kotlin?

I have this enum:
enum class Types(val value: Int) {
FOO(1)
BAR(2)
FOO_BAR(3)
}
How do I create an instance of that enum using an Int?
I tried doing something like this:
val type = Types.valueOf(1)
And I get the error:
Integer literal does not conform to the expected type String
enum class Types(val value: Int) {
FOO(1),
BAR(2),
FOO_BAR(3);
companion object {
fun fromInt(value: Int) = Types.values().first { it.value == value }
}
}
You may want to add a safety check for the range and return null.
Enum#valueOf is based on name. Which means in order to use that, you'd need to use valueof("FOO"). The valueof method consequently takes a String, which explains the error. A String isn't an Int, and types matter. The reason I mentioned what it does too, is so you know this isn't the method you're looking for.
If you want to grab one based on an int value, you need to define your own function to do so. You can get the values in an enum using values(), which returns an Array<Types> in this case. You can use firstOrNull as a safe approach, or first if you prefer an exception over null.
So add a companion object (which are static relative to the enum, so you can call Types.getByValue(1234) (Types.COMPANION.getByValue(1234) from Java) over Types.FOO.getByValue(1234).
companion object {
private val VALUES = values()
fun getByValue(value: Int) = VALUES.firstOrNull { it.value == value }
}
values() returns a new Array every time it's called, which means you should cache it locally to avoid re-creating one every single time you call getByValue. If you call values() when the method is called, you risk re-creating it repeatedly (depending on how many times you actually call it though), which is a waste of memory.
Admittedly, and as discussed in the comments, this may be an insignificant optimization, depending on your use. This means you can also do:
companion object {
fun getByValue(value: Int) = values().firstOrNull { it.value == value }
}
if that's something you'd prefer for readability or some other reason.
The function could also be expanded and check based on multiple parameters, if that's something you want to do. These types of functions aren't limited to one argument.
If you are using integer value only to maintain order, which you need to access correct value, then you don't need any extra code. You can use build in value ordinal. Ordinal represents position of value in enum declaration.
Here is an example:
enum class Types {
FOO, //Types.FOO.ordinal == 0 also position == 0
BAR, //Types.BAR.ordinal == 1 also position == 1
FOO_BAR //Types.FOO_BAR.ordinal == 2 also position == 2
}
You can access ordinal value simply calling:
Types.FOO.ordinal
To get correct value of enum you can simply call:
Types.values()[0] //Returns FOO
Types.values()[1] //Returns BAR
Types.values()[2] //Returns FOO_BAR
Types.values() returns enum values in order accordingly to declaration.
Summary:
Types.values(Types.FOO.ordinal) == Types.FOO //This is true
If integer values don't match order (int_value != enum.ordinal) or you are using different type (string, float...), than you need to iterate and compare your custom values as it was already mentioned in this thread.
It really depends on what you actually want to do.
If you need a specific hardcoded enum value, then you can directly use Types.FOO
If you are receiving the value dynamically from somewhere else in your code, you should try to use the enum type directly in order not to have to perform this kind of conversions
If you are receiving the value from a webservice, there should be something in your deserialization tool to allow this kind of conversion (like Jackson's #JsonValue)
If you want to get the enum value based on one of its properties (like the value property here), then I'm afraid you'll have to implement your own conversion method, as #Zoe pointed out.
One way to implement this custom conversion is by adding a companion object with the conversion method:
enum class Types(val value: Int) {
FOO(1),
BAR(2),
FOO_BAR(3);
companion object {
private val types = values().associate { it.value to it }
fun findByValue(value: Int): Types? = types[value]
}
}
Companion objects in Kotlin are meant to contain members that belong to the class but that are not tied to any instance (like Java's static members).
Implementing the method there allows you to access your value by calling:
var bar = Types.findByValue(2) ?: error("No Types enum value found for 2")
Note that the returned value is nullable, to account for the possibility that no enum value corresponds to the parameter that was passed in. You can use the elvis operator ?: to handle that case with an error or a default value.
If you hate declaring for each enum type a companion object{ ... } to achieve EMotorcycleType.fromInt(...). Here's a solution for you.
EnumCaster object:
object EnumCaster {
inline fun <reified E : Enum<E>> fromInt(value: Int): E {
return enumValues<E>().first { it.toString().toInt() == value }
}
}
Enum example:
enum class EMotorcycleType(val value: Int){
Unknown(0),
Sport(1),
SportTouring(2),
Touring(3),
Naked(4),
Enduro(5),
SuperMoto(6),
Chopper(7),
CafeRacer(8),
.....
Count(9999);
override fun toString(): String = value.toString()
}
Usage example 1: Kotlin enum to jni and back
fun getType(): EMotorcycleType = EnumCaster.fromInt(nGetType())
private external fun nGetType(): Int
fun setType(type: EMotorcycleType) = nSetType(type.value)
private external fun nSetType(value: Int)
---- or ----
var type : EMotorcycleType
get() = EnumCaster.fromInt(nGetType())
set(value) = nSetType(value.value)
private external fun nGetType(): Int
private external fun nSetType(value: Int)
Usage example 2: Assign to val
val type = EnumCaster.fromInt<EMotorcycleType>(aValidTypeIntValue)
val typeTwo : EMotorcycleType = EnumCaster.fromInt(anotherValidTypeIntValue)
A naive way can be:
enum class Types(val value: Int) {
FOO(1),
BAR(2),
FOO_BAR(3);
companion object {
fun valueOf(value: Int) = Types.values().find { it.value == value }
}
}
Then you can use
var bar = Types.valueOf(2)
Protocol orientated way with type-safety
interface RawRepresentable<T> {
val rawValue: T
}
inline fun <reified E, T> valueOf(value: T): E? where E : Enum<E>, E: RawRepresentable<T> {
return enumValues<E>().firstOrNull { it.rawValue == value }
}
enum class Types(override val rawValue: Int): RawRepresentable<Int> {
FOO(1),
BAR(2),
FOO_BAR(3);
}
Usage
val type = valueOf<Type>(2) // BAR(2)
You can use it on non-integer type, too.
I would build the 'reverse' map ahead of time. Probably not a big improvement, but also not much code.
enum class Test(val value: Int) {
A(1),
B(2);
companion object {
val reverseValues: Map<Int, Test> = values().associate { it.value to it }
fun valueFrom(i: Int): Test = reverseValues[i]!!
}
}
Edit: map...toMap() changed to associate per #hotkey's suggestion.
try this...
companion object{
fun FromInt(v:Int):Type{
return Type::class.java.constructors[0].newInstance(v) as Type
}
}
This is for anyone looking for getting the enum from its ordinal or index integer.
enum class MyEnum { RED, GREEN, BLUE }
MyEnum.values()[1] // GREEN
Another solution and its variations:
inline fun <reified T : Enum<T>> enumFromIndex(i: Int) = enumValues<T>()[i]
enumFromIndex<MyEnum>(1) // GREEN
inline fun <reified T : Enum<T>> enumFromIndex(i: Int) = enumValues<T>().getOrNull(i)
enumFromIndex<MyEnum>(3) ?: MyEnum.RED // RED
inline fun <reified T : Enum<T>> enumFromIndex(i: Int, default: T) =
enumValues<T>().getOrElse(i) { default }
enumFromIndex(2, MyEnum.RED) // BLUE
It is an adapted version of another answer. Also, thanks to Miha_x64 for this answer.
Another option...
enum class Types(val code: Int) {
FOO(1),
BAR(2),
FOO_BAR(3);
companion object {
val map = values().associate { it.code to it }
// Get Type by code with check existing codes and default
fun getByCode(code: Int, typeDefault_param: Types = FOO): Types {
return map[code] ?: typeDefault_param
}
}
}
fun main() {
println("get 3: ${Types.getByCode(3)}")
println("get 10: ${Types.getByCode(10)}")
}
get 3: FOO_BAR
get 10: FOO