Ignite slowdown when node increase to 2 - ignite

I use Ignite.Net and run ignite in my .net core app process.
My application receives some messages (5000 per second) and I put or remove some keys according to the messages received. The cache mode is replicated, with default Primary_Sync write mode.
Everything is good and I can process up to 20,000 messages/sec.
But when I run another ignite node on another machine, everything changes. Processing speed is reduced up to 1000 messages per second.
perhaps it's due to that some operations do on the network, but I want just put or remove keys on the local instance and replicate them (changed keys) to other nodes. Write mode is Primary_Sync and this means ignite must put or remove key on the local node (because all nodes are the same due to replicated mode and no need to distribute them on other nodes) and then replicate them to other nodes asynchronously.
Where is the problem?
Is the slowdown due to network operations?

Looking at the code (could not run it - requires messing with SQL server), I can provide the following recommendations:
Use DataStreamer. Always use streamer when adding/removing batches of data.
Try using multiple threads to load the data. Ignite APIs are thread-safe.
Maybe try CacheWriteSynchronizationMode.FullAsync
Together this should result in a noticeable speedup, no matter how many nodes.

Related

What happens when all baseline nodes stop or disconnect from network except one?

We have 3 ignite server nodes in 3 different server farms, full replicated, persistence enabled, and all servers area baseline nodes. It happens that if 2 server nodes fail (node or connection crash or slow connection), the remainig one also perform a shutdown, perhaps guessing it's disconnected from the network.
Is it possible to make the surviving node not to shutdown?
Is it possible to adjust some timeout to avoid disconnections from slow networks or nodes?
I cannot find any hint into the documentation.
To avoid the problem I've to run only one server node (what we tried to avoid using Ignite...).
You can try to customize StopNodeOrHaltFailureHandler https://stackoverflow.com/questions/tagged/ignite with SEGMENTATION added to ignoredFailureTypes.
But in this case, if all 3 nodes are segmented and remain alive, you need to keep in mind that the cluster may enter the split-brain state.
To decide wich node should be used for cache operations, you can add TopologyValidator https://ignite.apache.org/releases/latest/javadoc/org/apache/ignite/configuration/TopologyValidator.html to cache config. And based on node attributes to decide which node is allowed.

How to setup a Akka.NET cluster when I do not really need persistence?

I have a fairly simple Akka.NET system that tracks in-memory state, but contains only derived data. So any actor can on startup load its up-to-date state from a backend database and then start receiving messages and keep their state from there. So I can just let actors fail and restart the process whenever I want. It will rebuild itself.
But... I would like to run across multiple nodes (mostly for the memory requirements) and I'd like to increase/decrease the number of nodes according to demand. Also for releasing a new version without downtime.
What would be the most lightweight (in terms of Persistence) setup of clustering to achieve this? Can you run Clustering without Persistence?
This not a single question, so let me answer them one by one:
So I can just let actors fail and restart the process whenever I want - yes, but keep in mind, that hard reset of the process is a lot more expensive than graceful shutdown. In distributed systems if your node is going down, it's better for it to communicate that to the rest of the nodes before, than requiring them to detect the dead one - this is a part of node failure detection and can take some time (even sub minute).
I'd like to increase/decrease the number of nodes according to demand - this is a standard behavior of the cluster. In case of Akka.NET depending on which feature set are you going to use, you may sometimes need to specify an upper bound of the cluster size.
Also for releasing a new version without downtime. - most of the cluster features can be scoped to a set of particular nodes using so called roles. Each node can have it's set of roles, that can be used what services it provides and detect if other nodes have required capabilities. For that reason you can use roles for things like versioning.
Can you run Clustering without Persistence? - yes, and this is a default configuration (in Akka, cluster nodes don't need to use any form of persistent backend to work).

Zookeeper vs In-memory-data-grid vs Redis

I've found different zookeeper definitions across multiple resources. Maybe some of them are taken out of context, but look at them pls:
A canonical example of Zookeeper usage is distributed-memory computation...
ZooKeeper is an open source Apacheā„¢ project that provides a centralized infrastructure and services that enable synchronization across a cluster.
Apache ZooKeeper is an open source file application program interface (API) that allows distributed processes in large systems to synchronize with each other so that all clients making requests receive consistent data.
I've worked with Redis and Hazelcast, that would be easier for me to understand Zookeeper by comparing it with them.
Could you please compare Zookeeper with in-memory-data-grids and Redis?
If distributed-memory computation, how does zookeeper differ from in-memory-data-grids?
If synchronization across cluster, than how does it differs from all other in-memory storages? The same in-memory-data-grids also provide cluster-wide locks. Redis also has some kind of transactions.
If it's only about in-memory consistent data, than there are other alternatives. Imdg allow you to achieve the same, don't they?
https://zookeeper.apache.org/doc/current/zookeeperOver.html
By default, Zookeeper replicates all your data to every node and lets clients watch the data for changes. Changes are sent very quickly (within a bounded amount of time) to clients. You can also create "ephemeral nodes", which are deleted within a specified time if a client disconnects. ZooKeeper is highly optimized for reads, while writes are very slow (since they generally are sent to every client as soon as the write takes place). Finally, the maximum size of a "file" (znode) in Zookeeper is 1MB, but typically they'll be single strings.
Taken together, this means that zookeeper is not meant to store for much data, and definitely not a cache. Instead, it's for managing heartbeats/knowing what servers are online, storing/updating configuration, and possibly message passing (though if you have large #s of messages or high throughput demands, something like RabbitMQ will be much better for this task).
Basically, ZooKeeper (and Curator, which is built on it) helps in handling the mechanics of clustering -- heartbeats, distributing updates/configuration, distributed locks, etc.
It's not really comparable to Redis, but for the specific questions...
It doesn't support any computation and for most data sets, won't be able to store the data with any performance.
It's replicated to all nodes in the cluster (there's nothing like Redis clustering where the data can be distributed). All messages are processed atomically in full and are sequenced, so there's no real transactions. It can be USED to implement cluster-wide locks for your services (it's very good at that in fact), and tehre are a lot of locking primitives on the znodes themselves to control which nodes access them.
Sure, but ZooKeeper fills a niche. It's a tool for making a distributed applications play nice with multiple instances, not for storing/sharing large amounts of data. Compared to using an IMDG for this purpose, Zookeeper will be faster, manages heartbeats and synchronization in a predictable way (with a lot of APIs for making this part easy), and has a "push" paradigm instead of "pull" so nodes are notified very quickly of changes.
The quotation from the linked question...
A canonical example of Zookeeper usage is distributed-memory computation
... is, IMO, a bit misleading. You would use it to orchestrate the computation, not provide the data. For example, let's say you had to process rows 1-100 of a table. You might put 10 ZK nodes up, with names like "1-10", "11-20", "21-30", etc. Client applications would be notified of this change automatically by ZK, and the first one would grab "1-10" and set an ephemeral node clients/192.168.77.66/processing/rows_1_10
The next application would see this and go for the next group to process. The actual data to compute would be stored elsewhere (ie Redis, SQL database, etc). If the node failed partway through the computation, another node could see this (after 30-60 seconds) and pick up the job again.
I'd say the canonical example of ZooKeeper is leader election, though. Let's say you have 3 nodes -- one is master and the other 2 are slaves. If the master goes down, a slave node must become the new leader. This type of thing is perfect for ZK.
Consistency Guarantees
ZooKeeper is a high performance, scalable service. Both reads and write operations are designed to be fast, though reads are faster than writes. The reason for this is that in the case of reads, ZooKeeper can serve older data, which in turn is due to ZooKeeper's consistency guarantees:
Sequential Consistency
Updates from a client will be applied in the order that they were sent.
Atomicity
Updates either succeed or fail -- there are no partial results.
Single System Image
A client will see the same view of the service regardless of the server that it connects to.
Reliability
Once an update has been applied, it will persist from that time forward until a client overwrites the update. This guarantee has two corollaries:
If a client gets a successful return code, the update will have been applied. On some failures (communication errors, timeouts, etc) the client will not know if the update has applied or not. We take steps to minimize the failures, but the only guarantee is only present with successful return codes. (This is called the monotonicity condition in Paxos.)
Any updates that are seen by the client, through a read request or successful update, will never be rolled back when recovering from server failures.
Timeliness
The clients view of the system is guaranteed to be up-to-date within a certain time bound. (On the order of tens of seconds.) Either system changes will be seen by a client within this bound, or the client will detect a service outage.

Redis cache in a clustered web farm? Sync between two member nodes?

Ok, so what I have are 2 web servers running inside of a Windows NLB clustered environment. The servers are identical in every respect, and as you'd expect in an NLB clustered environment, everybody is hitting the cluster name and not the individual members. We also have affinity turned off on the members in the cluster.
But, what I'm trying to do is to turn on some caching for a few large files (MP3s). It's easy enough to dial up a Redis node on one particular member and hit it, everything works like you'd expect. I can pull the data from the cache and serve it up as needed.
Now, let's add the overhead of the NLB. With an NLB in play, you may not be hitting the same web server each time. You might make your first hit to member 01, and the second hit to 02. So, I'd need a way to sync between the two servers. That way it doesn't matter which cluster member you hit, you are going to get the same data.
I don't need to worry about one cache being out of date, the only thing I'm storing in there is read only data from an internal web service.
I've only got 2 servers and it looks like redis clusters need 3. So I guess that's out.
Is this the best approach? Or perhaps there is something else better?
Reasons for redis: We only want the cache to use in-memory only. No writes to the database. Thought this would be a good fit, but need to make sure the data is available in both servers.
It's not possible to have redis multi master (writing on both). And I might say it's replication is blazing fast (check the slaveof command of Redis).
But why you need it in the same server? Access it as a service. So every node will access the actual data. If the main server goes down, the slave will promptly turn itself into a master.
One observation: you might notice that Redis makes use of disk in an async way. An append only file that it does checkpoint depending on the size from time to time so.

Couchbase node failure

My understanding could be amiss here. As I understand it, Couchbase uses a smart client to automatically select which node to write to or read from in a cluster. What I DON'T understand is, when this data is written/read, is it also immediately written to all other nodes? If so, in the event of a node failure, how does Couchbase know to use a different node from the one that was 'marked as the master' for the current operation/key? Do you lose data in the event that one of your nodes fails?
This sentence from the Couchbase Server Manual gives me the impression that you do lose data (which would make Couchbase unsuitable for high availability requirements):
With fewer larger nodes, in case of a node failure the impact to the
application will be greater
Thank you in advance for your time :)
By default when data is written into couchbase client returns success just after that data is written to one node's memory. After that couchbase save it to disk and does replication.
If you want to ensure that data is persisted to disk in most client libs there is functions that allow you to do that. With help of those functions you can also enshure that data is replicated to another node. This function is called observe.
When one node goes down, it should be failovered. Couchbase server could do that automatically when Auto failover timeout is set in server settings. I.e. if you have 3 nodes cluster and stored data has 2 replicas and one node goes down, you'll not lose data. If the second node fails you'll also not lose all data - it will be available on last node.
If one node that was Master goes down and failover - other alive node becames Master. In your client you point to all servers in cluster, so if it unable to retreive data from one node, it tries to get it from another.
Also if you have 2 nodes in your disposal you can install 2 separate couchbase servers and configure XDCR (cross datacenter replication) and manually check servers availability with HA proxies or something else. In that way you'll get only one ip to connect (proxy's ip) which will automatically get data from alive server.
Hopefully Couchbase is a good system for HA systems.
Let me explain in few sentence how it works, suppose you have a 5 nodes cluster. The applications, using the Client API/SDK, is always aware of the topology of the cluster (and any change in the topology).
When you set/get a document in the cluster the Client API uses the same algorithm than the server, to chose on which node it should be written. So the client select using a CRC32 hash the node, write on this node. Then asynchronously the cluster will copy 1 or more replicas to the other nodes (depending of your configuration).
Couchbase has only 1 active copy of a document at the time. So it is easy to be consistent. So the applications get and set from this active document.
In case of failure, the server has some work to do, once the failure is discovered (automatically or by a monitoring system), a "fail over" occurs. This means that the replicas are promoted as active and it is know possible to work like before. Usually you do a rebalance of the node to balance the cluster properly.
The sentence you are commenting is simply to say that the less number of node you have, the bigger will be the impact in case of failure/rebalance, since you will have to route the same number of request to a smaller number of nodes. Hopefully you do not lose data ;)
You can find some very detailed information about this way of working on Couchbase CTO blog:
http://damienkatz.net/2013/05/dynamo_sure_works_hard.html
Note: I am working as developer evangelist at Couchbase