The Code A is from the project play-billing-samples, you can see it.
I don't know why the author design localCacheBillingClient as lateinit, it cause the code is little complex, if (::localCacheBillingClient.isInitialized == false) {...} are invoked many times.
I think Code B can works well, right?
Code A
class BillingRepository private constructor(private val application: Application) :
PurchasesUpdatedListener, BillingClientStateListener {
lateinit private var localCacheBillingClient: LocalBillingDb
val subsSkuDetailsListLiveData: LiveData<List<AugmentedSkuDetails>> by lazy {
if (::localCacheBillingClient.isInitialized == false) {
localCacheBillingClient = LocalBillingDb.getInstance(application)
}
localCacheBillingClient.skuDetailsDao().getSubscriptionSkuDetails()
}
val inappSkuDetailsListLiveData: LiveData<List<AugmentedSkuDetails>> by lazy {
if (::localCacheBillingClient.isInitialized == false) {
localCacheBillingClient = LocalBillingDb.getInstance(application)
}
localCacheBillingClient.skuDetailsDao().getInappSkuDetails()
}
fun startDataSourceConnections() {
Log.d(LOG_TAG, "startDataSourceConnections")
instantiateAndConnectToPlayBillingService()
localCacheBillingClient = LocalBillingDb.getInstance(application)
}
...
}
Code B
class BillingRepository private constructor(private val application: Application) :
PurchasesUpdatedListener, BillingClientStateListener {
private val localCacheBillingClient: LocalBillingDb by lazy {
LocalBillingDb.getInstance(application)
}
val subsSkuDetailsListLiveData: LiveData<List<AugmentedSkuDetails>> by lazy {
localCacheBillingClient.skuDetailsDao().getSubscriptionSkuDetails()
}
val inappSkuDetailsListLiveData: LiveData<List<AugmentedSkuDetails>> by lazy {
localCacheBillingClient.skuDetailsDao().getInappSkuDetails()
}
fun startDataSourceConnections() {
Log.d(LOG_TAG, "startDataSourceConnections")
instantiateAndConnectToPlayBillingService()
}
...
}
Kotlin - Property initialization using "by lazy" vs. "lateinit"
I believe the answer lies in this thread and precisely below point.
lateinit var can be initialized from anywhere the object is seen from, e.g. from inside a framework code, and multiple initialization scenarios are possible for different objects of a single class. by lazy { ... }, in turn, defines the only initializer for the property, which can be altered only by overriding the property in a subclass. If you want your property to be initialized from outside in a way probably unknown beforehand, use lateinit.
Related
I use Jetpack Compose and have 2 screens. When I open second screen and back to the fisrt, flow variable calling again and ui updated again. But, I don't understand why... When I use liveData was working perfect.
My code with LiveData:
class MainViewModel(private val roomRepository: Repository, private val sPref:SharedPreferences) : ViewModel() {
val words: LiveData<List<WordModel>> by lazy {
roomRepository.getAllWords()
}
...
}
MainScreen.kt:
#ExperimentalMaterialApi
#Composable
fun MainScreen(viewModel: MainViewModel) {
...
val words: List<WordModel> by viewModel
.words
.observeAsState(listOf())
...
WordList(
words = words,
onNoticeClick = { viewModel.onWordClick(it) },
state = textState,
lazyState = viewModel.listState!!
)
...
}
#Composable
private fun WordList(
words: List<WordModel>,
onNoticeClick: (WordModel) -> Unit,
state: MutableState<TextFieldValue>,
lazyState: LazyListState
) {
var filteredCountries: List<WordModel>
LazyColumn(state = lazyState) {
val searchedText = state.value.text
filteredCountries = if (searchedText.isEmpty()) {
words
} else {
words.filter {
it.word.lowercase().contains(searchedText) || it.translation.lowercase()
.contains(searchedText)
}
}
items(count = filteredCountries.size) { noteIndex ->
val note = filteredCountries[noteIndex]
Word(
word = note,
onWordClick = onNoticeClick
)
}
}
}
WordDao.kt:
#Dao
interface WordDao {
#Query("SELECT * FROM WordDbModel")
fun getAll(): LiveData<List<WordDbModel>>
}
RoomRepositoryImpl.kt:
class RoomRepositoryImpl(
private val wordDao: WordDao,
private val noticeDao: NoticeDao,
private val dbMapper: DbMapper
) : Repository {
override fun getAllWords(): LiveData<List<WordModel>> =
Transformations.map(wordDao.getAll()) {dbMapper.mapWords(it)}
...
}
DbMapperImpl.kt:
class DbMapperImpl: DbMapper {
...
override fun mapWords(words: List<WordDbModel>): List<WordModel> =
words.map { word -> mapWord(word, listOf<NoticeModel>()) }
}
My code with Flow, which calling every time when open the first screen:
class MainViewModel(private val roomRepository: Repository, private val sPref:SharedPreferences) : ViewModel() {
val words: Flow<List<WordModel>> = flow {
emitAll(repository.getAllWords())
}
}
MainScreen.kt:
#ExperimentalMaterialApi
#Composable
fun MainScreen(viewModel: MainViewModel) {
...
val words: List<WordModel> by viewModel
.words
.collectAsState(initial = listOf())
...
}
WordDao.kt:
#Dao
interface WordDao {
#Query("SELECT * FROM WordDbModel")
fun getAll(): Flow<List<WordDbModel>>
}
RoomRepositoryImpl.kt:
class RoomRepositoryImpl(
private val wordDao: WordDao,
private val noticeDao: NoticeDao,
private val dbMapper: DbMapper
) : Repository {
override fun getWords(): Flow<List<WordModel>> = wordDao.getAll().map { dbMapper.mapWords(it) }
}
And my router from MainRouting.kt:
sealed class Screen {
object Main : Screen()
object Notice : Screen()
object Your : Screen()
object Favorites : Screen()
}
object MainRouter {
var currentScreen: Screen by mutableStateOf(Screen.Main)
var beforeScreen: Screen? = null
fun navigateTo(destination: Screen) {
beforeScreen = currentScreen
currentScreen = destination
}
}
And MainActivity.kt:
class MainActivity : ComponentActivity() {
...
#Composable
#ExperimentalMaterialApi
private fun MainActivityScreen(viewModel: MainViewModel) {
Surface {
when (MainRouter.currentScreen) {
is Screen.Main -> MainScreen(viewModel)
is Screen.Your -> MainScreen(viewModel)
is Screen.Favorites -> MainScreen(viewModel)
is Screen.Notice -> NoticeScreen(viewModel = viewModel)
}
}
}
...
}
Perhaps someone knows why a new drawing does not occur with liveData (or, it is performed so quickly that it is not noticeable that it is), but with Flow the drawing of the list is visible.
You're passing the viewModel around, which is a terrible practice in a framework like Compose. The Model is like a waiter. It hangs around you, serves you water, does its job while you make the order. As you get distracted talking, it leaves. When it comes back, it is not the same waiter you had earlier. It wears the same uniform, with the same characteristics, but is still essentially a different object. When you pass the model around, it gets destroyed in the process of navigation. In case of flow, you are getting biased. Notice how you manually do a lazy initialization for the LiveData, but a standard proc. for Flow? Seems like the only logical reason for your observed inconsistency. If you want to use Flow in your calls instead of LiveData, just convert it at the site of initialization in the ViewModel. Your symptoms should go away.
Looking for a natural Kotlin way to let startTime be initialized only in a particular place and exactly once.
The following naive implementation have two problems:
it is not thread safe
it does not express the fact "the variable was or will be assigned exactly once in the lifetime of an Item instance"
class Item {
var startTime: Instant?
fun start(){
if (startTime == null){
startTime = Instant.now()
}
// do stuff
}
}
I believe some kind of a delegate could be applicable here. In other words this code needs something similar to a lazy variable, but without initialization on first read, instead it happens only after explicit call of "touching" method. Maybe the Wrap calls could give an idea of possible implementation.
class Wrap<T>(
supp: () -> T
){
private var value: T? = null
private val lock = ReentrantLock()
fun get(){
return value
}
fun touch(){
lock.lock()
try{
if (value == null){
value = supp()
} else {
throw IllegalStateExecption("Duplicate init")
}
} finally{
lock.unlock()
}
}
}
How about combining AtomicReference.compareAndSet with a custom backing field?
You can use a private setter and make sure that the only place the class sets the value is from the start() method.
class Item(val value: Int) {
private val _startTime = AtomicReference(Instant.EPOCH)
var startTime: Instant?
get() = _startTime.get().takeIf { it != Instant.EPOCH }
private set(value) = check(_startTime.compareAndSet(Instant.EPOCH, value)) { "Duplicate set" }
fun start() {
startTime = Instant.now()
}
override fun toString() = "$value: $startTime"
}
fun main() = runBlocking {
val item1 = Item(1)
val item2 = Item(2)
println(Instant.now())
launch { println(item1); item1.start(); println(item1) }
launch { println(item1) }
delay(1000)
println(item2)
item2.start()
println(item2)
println(item2)
item2.start()
}
Example output:
2021-07-14T08:20:27.546821Z
1: null
1: 2021-07-14T08:20:27.607365Z
1: 2021-07-14T08:20:27.607365Z
2: null
2: 2021-07-14T08:20:28.584114Z
2: 2021-07-14T08:20:28.584114Z
Exception in thread "main" java.lang.IllegalStateException: Duplicate set
I think your Wrap class is a good starting point to implement this. I would definitely make it a property delegate and touch() could be much simplified:
fun touch() {
synchronized(this) {
check(value == null) { "Duplicate init" }
value = supp()
}
}
Then you can remove lock. But generally, this is a good approach.
If you would like to reuse lazy util from stdlib then you can do this by wrapping it with another object which does not read its value until asked:
class ManualLazy<T : Any>(private val lazy: Lazy<T>) {
operator fun getValue(thisRef: Any?, property: KProperty<*>): T? {
return if (lazy.isInitialized()) lazy.value else null
}
fun touch() {
lazy.value
}
}
class Item {
private val _startTime = ManualLazy(lazy { Instant.now() })
val startTime: Instant? by _startTime
fun start(){
_startTime.touch()
}
}
Of course, depending on your needs you can implement it in a much different way, using a similar technique.
This may be considered exploiting or hacking lazy util. I agree and I think Wrap approach is a better one.
I was thinking about such case (accessing outer class which uses current class to implement some stuff):
interface Does {
fun doStuff()
}
class ReallyDoes: Does {
var whoShouldReallyDo: Does? = null
override fun doStuff() {
println("Doing stuff instead of $whoShouldReallyDo")
}
}
class MakesOtherDo private constructor(other: Does, hax: Int = 42): Does by other {
constructor(other: ReallyDoes): this(other.also { it.whoShouldReallyDo = this }, 42)
}
fun main(args: Array<String>) {
val worker = ReallyDoes()
val boss = MakesOtherDo(other = worker)
boss.doStuff()
}
Expected output:
Doing stuff instead of MakesOtherDo#28a418fc
But can't do that, because of error:
Error:(15, 79) Cannot access '' before superclass constructor
has been called
Which targets this statement: other.also { it.whoShouldReallyDo = this }
How can I (if at all) fix above implementation?
The reason for the error is other.also { ... = this } expression accesses this of type MakeOtherDo and is also used as argument to MakeOtherDo constructor. Hence, this will be accessed as part of MakeOtherDo (unary) constructor before this has been initialized as an instance of Does (super)class.
Since the assignment does not affect the initialization of the super class, you can executed it in the constructor of MakesOtherDo after the super class has been initialized.
class MakesOtherDo private constructor(other: Does, hax: Int = 42): Does by other {
constructor(other: ReallyDoes): this(other, 42) {
other.also { it.whoShouldReallyDo = this }
}
}
It took me a few minutes to decipher what you were doing above, and really the problem has nothing to do with delegates. You can simplify it down to this:
class Wrapper(var any: Any? = null)
class Test(val wrapper: Wrapper) {
constructor(): this(Wrapper(this)) // Cannot access "<this>" before superclass constructor has been called
}
The concept of "this" doesn't exist yet when we're still generating arguments for its constructor. You just need to move the assignment into the block of the constructor, which is code that's run after this becomes available:
class Test(val wrapper: Wrapper) {
constructor(): this(Wrapper()){
wrapper.any = this
}
}
Or in the case of your example:
constructor(other: ReallyDoes): this(other, 42){
other.whoShouldReallyDo = this
}
Is there any elegant way to apply polymorphism in this case? The parser provides the following classes at runtime:
class io.swagger.v3.oas.models.media.Schema //is parent of the rest :
class io.swagger.v3.oas.models.media.ComposedSchema
class io.swagger.v3.oas.models.media.ArraySchema
class io.swagger.v3.oas.models.media.StringSchema
class io.swagger.v3.oas.models.media.ObjectSchema
I'd like to have function for each class with the same name and simple, short method which will cast and call necessary function at runtime. Which is actually happening, but I hope there is more brief solution, without necessity of making this kind of duplicates:
fun main() {
val parser = OpenAPIV3Parser()
val asList = listOf(pathYaml3, pathYml2)
val map = asList.map(parser::read)
.flatMap { it.components.schemas.values }
.forEach(::parseRawSchema)
}
fun parseRawSchema(schema: Schema<Any>) {
if (schema is ComposedSchema) {
parseSchema(schema)
}
if (schema is StringSchema) {
parseSchema(schema)
}
...
}
fun parseSchema(schema: ComposedSchema) {
println("Compose-schema")
}
fun parseSchema(schema: StringSchema) {
println("Sting-schema")
}
...
Try use extension.
For example:
fun ComposedSchema.parseSchema() {
println("Compose-schema")
}
fun StringSchema.parseSchema() {
println("Sting-schema")
}
And than:
fun parseRawSchema(schema: Schema<Any>) {
schema.parseSchema()
}
I am trying to understand how to hide a base constructor parameter in a subclass in kotlin. How do you put a facade over a base constructor? This doesn't work:
import com.android.volley.Request
import com.android.volley.Response
class MyCustomRequest(url: String)
: Request<String>(Request.Method.POST, url, hiddenListener) {
private fun hiddenListener() = Response.ErrorListener {
/* super secret listener */
}
...
}
I think I understand the problem:
During construction of a new instance of a derived class, the base
class initialization is done as the first step (preceded only by
evaluation of the arguments for the base class constructor) and thus
happens before the initialization logic of the derived class is run.
I'm trying to solve this problem for Volley, where I need my custom request to be be a Request so that it can be passed into a RequestQueue. It would be easier of RequestQueue took in some kind of interface but since it doesn't I have to subclass. There are other ways I can hide these complexities from the caller, but this limitation has come up for me other times in Kotlin and I'm not sure how to solve it.
I am not familiar with volley but I tried to come up with an example that should give you some insight how to solve your problem. What you can do is use a companion object:
interface MyListener {
fun handleEvent()
}
open class Base<T>(anything: Any, val listener: MyListener) { // this would be your Request class
fun onSomeEvent() {
listener.handleEvent()
}
}
class Derived(anything: Any) : Base<Any>(anything, hiddenListener) { // this would be your MyCustomRequest class
private companion object {
private val hiddenListener = object : MyListener {
override fun handleEvent() {
// do secret stuff here
}
}
}
}
So if you apply this to your problem, the result should look something like this:
class MyCustomRequest(url: String)
: Request<String>(Request.Method.POST, url, hiddenListener) {
private companion object {
private val hiddenListener = Response.ErrorListener {
/* super secret listener */
}
}
...
}
A different way would be to use a decorator, create your Request withing that decorator and just delegate the calls to it:
class Decorator(anything: Any) {
private var inner: Base<Any>
private val hiddenListener: MyListener = object : MyListener {
override fun handleEvent() { }
}
init {
inner = Base(anything, hiddenListener)
}
}
And once again for your example that would look like this:
class MyCustomRequest(url: String) {
private var inner: Request<String>
private val hiddenListener = Response.ErrorListener {
/* super secret listener */
}
init {
inner = Request<String>(Request.Method.POST, url, hiddenListener)
}
...
}