Kotlin generics supertype not applied - kotlin

I was coding on Java for quite a long time and trying to migrate to Kotlin. I'm confused with Generics in Kotlin a bit...
I have a DelegateManager class. It should consume only subtypes of IViewData
class DelegateManager<T : IViewData> {
private val delegates: MutableList<AdapterDelegate<T>> = mutableListOf()
fun addDelegate(adapterDelegate: AdapterDelegate<T>) {
delegates.add(adapterDelegate)
}
...
}
Inside TrackListAdapter I want to add a delegate. As you might have seen it's AdapterDelegate<TrackViewData> and TrackViewData is a subtype of IViewData So it should work but it shows error inside init block of TrackListAdapter
class TrackListAdapter : BaseListAdapter<IViewData>() {
init {
delegateManager.addDelegate(TrackViewDelegate()) // error: Type mismatch -> Required: AdapterDelegate<IViewData>, Found: TrackViewDelegate
}
}
class TrackViewDelegate : AdapterDelegate<TrackViewData>() {
override fun onCreateViewHolder(parent: ViewGroup): ListViewHolder<TrackViewData> {
val itemView = LayoutInflater.from(parent.context).inflate(R.layout.track_item, parent, false)
return TrackViewHolder(itemView)
}
override fun isDelegateForDataType(data: IViewData) = data is TrackViewData
}
How to deal with it? How to extend the generic parameter correctly?

Related

Custom Gradle Task having Kotlin Delegate

Gradle tasks using Kotlin are implemented as either abstract class ... or interface ....
In either case it is not clear how to use delegation.
The following works correctly but requires delegation to be performed manually (i.e. it does not use Kotlin delegation).
#CacheableTask
abstract class FooTask : DefaultTask(), CopySourceSpec {
#get:InputFiles
#get:Optional
#get:SkipWhenEmpty
#get:IgnoreEmptyDirectories
#get:PathSensitive(PathSensitivity.RELATIVE)
abstract val sourceFiles: ConfigurableFileCollection
#TaskAction
fun canonize() {
val sourceFileTree = sourceFiles.asFileTree
// do something with the sourceFileTree
}
override fun from(vararg sourcePaths: Any?): ProtobufHeaderTask {
this.sourceFiles.from(sourcePaths)
return this
}
override fun from(sourcePath: Any, closure: Closure<*>): ProtobufHeaderTask {
this.sourceFiles.from(sourcePath, closure)
return this
}
override fun from(sourcePath: Any, configureAction: Action<in CopySpec>): ProtobufHeaderTask {
this.sourceFiles.from(sourcePath, configureAction)
return this
}
}
It seems like this could be done more simply using Kotlin delegation.
#CacheableTask
abstract class FooTask : DefaultTask(), ConfigurableFileCollection by sourceFiles {
#get:InputFiles
#get:Optional
#get:SkipWhenEmpty
#get:IgnoreEmptyDirectories
#get:PathSensitive(PathSensitivity.RELATIVE)
abstract val sourceFiles: ConfigurableFileCollection
#TaskAction
fun canonize() {
val sourceFileTree = sourceFiles.asFileTree
// do something with the sourceFileTree
}
}
This latter case produces an error that sourceFiles is not defined.
Is it possible to use Kotlin delegation in this way?

How can I know which the subclass of sealed class will return when I use Compose in Android Studio?

The Result<out R> is a sealed class which hold three subclass Success, Error and Loading.
The fun Greeting is #Composable.
By my design, I define queryList as Result class, and it is assigned as Loading first, then it will be Success or Error.
1: But the following code can't be compiled as the following error information, what's wrong with my Code?
2: Is there a better solution for my design?
Compile error
Property delegate must have a 'getValue(Nothing?, KProperty>)' method. None of the following functions are suitable.*
#Composable
fun Greeting(
name: String,
mViewMode:SoundViewModel= viewModel()
) {
Column() {
//The following code cause error.
val queryList by produceState(initialValue = Result<Flow<List<MRecord>>>.Loading ) {
value = mViewMode.listRecord()
}
when (queryList){
is Loading -> { ...}
is Error -> { ...}
is Success -> {...}
}
}
}
class SoundViewModel #Inject constructor(): ViewModel()
{
fun listRecord(): Result<Flow<List<MRecord>>>{
return aSoundMeter.listRecord()
}
}
sealed class Result<out R> {
data class Success<out T>(val data: T) : Result<T>()
data class Error(val exception: Exception) : Result<Nothing>()
object Loading : Result<Nothing>()
}
Since queryList is backed by a delegate, it can not be final.
This means in theory, each time you access it, it might hold a different value. The kotlin compiler is very pessimistic about this and assumes that between the time the is Result.Success branch of your when statement is selected and val mydata = queryList.data is executed, the value of queryList might have changed.
To solve this, you can assign the current value of queryList to a final variable and work with that one instead:
when (val currentList = queryList) {
is Result.Error -> {}
is Result.Loading -> {}
is Result.Success -> {
SomeComposable(currentList.data) //currentList is properly smart-cast to Result.Success
}
}

Kotlin type inference on "supposedly" right types

I am new to Kotlin and I was playing with it. I pretty much wanted to create a pretty basic event bus. So I came up with this
interface Event
interface EventListener<E : Event> {
fun handle(event: E)
}
interface EventBus {
fun <E : Event> registerListener(aClass: Class<E>, eventListener: EventListener<E>)
}
class MyBus() : EventBus {
private val eventListeners: MutableMap<String, MutableList<EventListener<out Event>>> = mutableMapOf()
constructor(listeners: List<Pair<Class<Event>, EventListener<Event>>>) : this() {
listeners.forEach {
registerListener(it.first, it.second)
}
}
override fun <E : Event> registerListener(aClass: Class<E>, eventListener: EventListener<E>) {
val key = aClass.name
val listeners: MutableList<EventListener<out Event>> = eventListeners.getOrPut(key) { mutableListOf() }
listeners.add(eventListener)
}
}
val bus = MyBus(
listOf(
MyEvent::class.java to MyEventListener()
)
)
class MyEvent : Event
class AnotherEvent : Event
class MyEventListener : EventListener<MyEvent> {
override fun handle(event: MyEvent) {
}
}
what happens is that when I try to create MyBus using the constructor accepting the list of pairs, I get
Type inference failed. Expected type mismatch: inferred type is List<Pair<Class<MyEvent>,MyEventListener>> but List<Pair<Class<Event>,EventListener<Event>>> was expected
But if I change the constructor to be something like
constructor(listeners: List<Pair<Class<out Event>, EventListener<out Event>>>) : this() {
listeners.forEach {
registerListener(it.first, it.second)
}
}
adding out pretty much everywhere, then the MyBus constructor works, but the invocation to registerListener(..) breaks for the same exact reason as before. So the only way to solve this is to add "out"s also on registerListener function.
I suspect I'm doing something wrong here, but I don't know what precisely. Any help?
If you want your EventListener to be able to consume Events, then its type has to be invariant or covariant (not declared out). If it let you pass your EventListener<MyEvent> as if it were an EventListener<Event>, then your MyBus class might call listener.handle(event) on it with some Event that is not a MyEvent, such as AnotherEvent. Then you will get a ClassCastException when it tries to cast this AnotherEvent to MyEvent.
To be able to store different types of invariant EventHandlers, you will have to remove the variance restrictions by using star projection, and cast them when you retrieve them from the map. So make the map keys into class objects instead of just Strings. Since you will not have the help of the compiler when working with the star-projected types, you need to be careful that you are only adding an item to your MutableMap that is of the same type as the Class key that's associated with it. Then when you retrieve items, only cast to an invariant type.
The other part of your issue is that your constructor needs a generic type. Right now it works exclusively with Event so it can't handle subtypes of Event. Kotlin doesn't (yet?) support generic types for constructors so you have to do this with a factory function.
Here's an example of all the above.
class MyBus() : EventBus {
private val eventListeners: MutableMap<Class<*>, MutableList<EventListener<*>>> = mutableMapOf()
override fun <E : Event> registerListener(aClass: Class<E>, eventListener: EventListener<E>) {
val listeners = retrieveListeners(aClass)
listeners.add(eventListener)
}
private fun <E: Event> retrieveListeners(aClass: Class<E>): MutableList<EventListener<E>> {
#Suppress("UNCHECKED_CAST")
return eventListeners.getOrPut(aClass) { mutableListOf() } as MutableList<EventListener<E>>
}
}
// Factory function
fun <E : Event> myBusOf(listeners: List<Pair<Class<E>, EventListener<E>>>): MyBus {
return MyBus().apply {
listeners.forEach {
registerListener(it.first, it.second)
}
}
}
And you might want to change the type of the factory parameter from a <List>Pair to a vararg Pair so it's easier to use.
Here's a stripped down example to explain the variance limitation.
Your interface for an Event consumer:
interface EventListener<E : Event> {
fun handle(event: E)
}
Two implementations of Event:
class HelloEvent: Event {
fun sayHello() = println("Hello world")
}
class BoringEvent: Event {}
A class implementing the interface:
class HelloEventListener: EventListener<HelloEvent> {
override fun handle(event: HelloEvent) {
event.sayHello()
}
}
Now you have an EventListener that can handle only HelloEvents. Try to treat it like an EventListener<Event>:
val eventListener: EventListener<Event> = HelloEventListener() // COMPILE ERROR!
Imagine the compiler did not prevent you from doing this and you do this:
val eventListener: EventListener<Event> = HelloEventListener()
eventListener.handle(BoringEvent()) // CLASS CAST EXCEPTION AT RUN TIME!
If this were allowed your HelloEventListener would try to call sayHello() on the BoringEvent, which doesn't have that function, so it will crash. This is what generics are here to protect you from.
Now suppose your HelloEventListener.handle() didn't call event.sayHello(). Well, then it could have safely handled a BoringEvent. But the compiler isn't doing that level of analysis for you. It just knows what you declared, that HelloEventListener cannot handle anything except HelloEvent.

Why do I have to cast in this Kotlin code?

interface Foo<T: Bar> {
fun example(bar: T)
}
interface Bar
class Bar1 : Bar
class Bar2 : Bar
class FooEx1 : Foo<Bar1> {
override fun example(bar: Bar1) { }
}
class FooEx2 : Foo<Bar2> {
override fun example(bar: Bar2) { }
}
// Won't compile
// Even though FooEx1 and FooEx2 *are* Foo<Bar>
class ExampleDoesntCompile {
val collection = mutableListOf<Foo<Bar>>().apply {
this.add(FooEx1())
this.add(FooEx2())
}
}
// Will compile
// But have to cast FooEx1 and FooEx2 to Foo<Bar>
class ExampleDoesCompileButRequiresCast {
val collection = mutableListOf<Foo<Bar>>().apply {
this.add(FooEx1() as Foo<Bar>)
this.add(FooEx2() as Foo<Bar>)
}
}
So, I could for instance, state that Foo's parameterized type is out, but then I get a compile error for the function example:
interface Foo<out T: Bar> {
fun example(bar: T)
}
Error: Type parameter T is declared as 'out' but occurs in 'in' position in type T
Because generic types in Java / Kotlin are invariant by default. variance
interface Foo<out T: Bar>
If you can't make it covariant, then make the list items covariant
val collection = mutableListOf<Foo<out Bar>>().apply {
this.add(FooEx1())
this.add(FooEx2())
}
//or val collection = mutableListOf(FooEx1(), FooEx2())
So it'll crash at run time with the cast?
Here is example code that would crash:
val foo: Foo<Bar> = collection[0]
foo.example(Bar2())
So if you could create collection without a cast as in your ExampleDoesntCompile, you'd get code without any casts which throws a ClassCastExcepion.
This also shows why the interface can't be declared with out:
val foo: Foo<Bar> = FooEx1() // out would make this legal
foo.example(Bar2())
It would make sense to declare your interface with in, but this would mean a Foo<Bar> is a Foo<Bar1> and a Foo<Bar2>, not vice versa, so still wouldn't let you put FooEx1/2 into a collection of Foo<Bar>s.

Kotlin - How to find and cast an element by its type

I have a collection of objects which inherit Component and I want a function which finds an object by its concrete class and return it.
But Kotlin does not like the cast I do, and adding #Suppress("UNCHECKED_CAST") is ugly.
I have the following code:
open class GameObjectImpl : GameObject {
private val attachedComponents = mutableSetOf<Component>()
#Suppress("UNCHECKED_CAST")
override fun <TComponent : Component> getComponent(type: KClass<TComponent>): TComponent? {
return attachedComponents.find { type.isInstance(it) } as? TComponent
}
}
This should work for you:
open class GameObjectImpl : GameObject {
val attachedComponents = mutableSetOf<Component>()
override inline fun <reified TComponent : Component> getComponent(type: KClass<TComponent>): TComponent? {
return attachedComponents.filterIsInstance<TComponent>().firstOrNull()
}
}