How do I feed a tf.keras model, that includes a 1D input TF Hub module, with a tf.data.Dataset?
(Ultimately, the aim is to use a single tf.data.Dataset with a multi-input, multi-output keras funtional api model.)
Tried this:
import tensorflow as tf
import tensorflow_hub as hub
embed = "https://tfhub.dev/google/tf2-preview/gnews-swivel-20dim/1"
hub_layer = hub.KerasLayer(embed, output_shape=[20], input_shape=[],
dtype=tf.string, trainable=True, name='hub_layer')
# From tf hub webpage: "The module takes a batch of sentences in a 1-D tensor of strings as input."
input_tensor = tf.keras.Input(shape=(), dtype=tf.string)
hub_tensor = hub_layer(input_tensor)
x = tf.keras.layers.Dense(16, activation='relu')(hub_tensor)#(x)
main_output = tf.keras.layers.Dense(units=4, activation='softmax', name='main_output')(x)
model = tf.keras.models.Model(inputs=[input_tensor], outputs=[main_output])
# This works as expected.
X_tensor = tf.constant(['Hello World', 'The Quick Brown Fox'])
model(X_tensor)
# This fails
X_ds = tf.data.Dataset.from_tensors(X_tensor)
X_ds.element_spec
model(X_ds)
Expectation was that the 1D tensor in the dataset would be automatically extracted and consumed by the model.
Error message:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
in
21 X_ds = tf.data.Dataset.from_tensors(X_tensor)
22 X_ds.element_spec
---> 23 model(X_ds)
24
25
~/projects/email_analysis/email_venv/lib/python3.6/site-packages/tensorflow/python/keras/engine/base_layer.py in __call__(self, *args, **kwargs)
966 with base_layer_utils.autocast_context_manager(
967 self._compute_dtype):
--> 968 outputs = self.call(cast_inputs, *args, **kwargs)
969 self._handle_activity_regularization(inputs, outputs)
970 self._set_mask_metadata(inputs, outputs, input_masks)
~/projects/email_analysis/email_venv/lib/python3.6/site-packages/tensorflow/python/keras/engine/network.py in call(self, inputs, training, mask)
717 return self._run_internal_graph(
718 inputs, training=training, mask=mask,
--> 719 convert_kwargs_to_constants=base_layer_utils.call_context().saving)
720
721 def compute_output_shape(self, input_shape):
~/projects/email_analysis/email_venv/lib/python3.6/site-packages/tensorflow/python/keras/engine/network.py in _run_internal_graph(self, inputs, training, mask, convert_kwargs_to_constants)
835 tensor_dict = {}
836 for x, y in zip(self.inputs, inputs):
--> 837 y = self._conform_to_reference_input(y, ref_input=x)
838 x_id = str(id(x))
839 tensor_dict[x_id] = [y] * self._tensor_usage_count[x_id]
~/projects/email_analysis/email_venv/lib/python3.6/site-packages/tensorflow/python/keras/engine/network.py in _conform_to_reference_input(self, tensor, ref_input)
959 # Dtype handling.
960 if isinstance(ref_input, (ops.Tensor, composite_tensor.CompositeTensor)):
--> 961 tensor = math_ops.cast(tensor, dtype=ref_input.dtype)
962
963 return tensor
~/projects/email_analysis/email_venv/lib/python3.6/site-packages/tensorflow/python/util/dispatch.py in wrapper(*args, **kwargs)
178 """Call target, and fall back on dispatchers if there is a TypeError."""
179 try:
--> 180 return target(*args, **kwargs)
181 except (TypeError, ValueError):
182 # Note: convert_to_eager_tensor currently raises a ValueError, not a
~/projects/email_analysis/email_venv/lib/python3.6/site-packages/tensorflow/python/ops/math_ops.py in cast(x, dtype, name)
785 # allows some conversions that cast() can't do, e.g. casting numbers to
786 # strings.
--> 787 x = ops.convert_to_tensor(x, name="x")
788 if x.dtype.base_dtype != base_type:
789 x = gen_math_ops.cast(x, base_type, name=name)
~/projects/email_analysis/email_venv/lib/python3.6/site-packages/tensorflow/python/framework/ops.py in convert_to_tensor(value, dtype, name, as_ref, preferred_dtype, dtype_hint, ctx, accepted_result_types)
1339
1340 if ret is None:
-> 1341 ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref)
1342
1343 if ret is NotImplemented:
~/projects/email_analysis/email_venv/lib/python3.6/site-packages/tensorflow/python/framework/constant_op.py in _constant_tensor_conversion_function(v, dtype, name, as_ref)
319 as_ref=False):
320 _ = as_ref
--> 321 return constant(v, dtype=dtype, name=name)
322
323
~/projects/email_analysis/email_venv/lib/python3.6/site-packages/tensorflow/python/framework/constant_op.py in constant(value, dtype, shape, name)
260 """
261 return _constant_impl(value, dtype, shape, name, verify_shape=False,
--> 262 allow_broadcast=True)
263
264
~/projects/email_analysis/email_venv/lib/python3.6/site-packages/tensorflow/python/framework/constant_op.py in _constant_impl(value, dtype, shape, name, verify_shape, allow_broadcast)
268 ctx = context.context()
269 if ctx.executing_eagerly():
--> 270 t = convert_to_eager_tensor(value, ctx, dtype)
271 if shape is None:
272 return t
~/projects/email_analysis/email_venv/lib/python3.6/site-packages/tensorflow/python/framework/constant_op.py in convert_to_eager_tensor(value, ctx, dtype)
94 dtype = dtypes.as_dtype(dtype).as_datatype_enum
95 ctx.ensure_initialized()
---> 96 return ops.EagerTensor(value, ctx.device_name, dtype)
97
98
ValueError: Attempt to convert a value () with an unsupported type () to a Tensor.
The point of a dataset is to provide a sequence of tensors, like here:
all_data = tf.constant([['Hello', 'World'], ['Brown Fox', 'lazy dog']])
ds = tf.data.Dataset.from_tensor_slices(all_data)
for tensor in ds:
print(tensor)
which outputs
tf.Tensor([b'Hello' b'World'], shape=(2,), dtype=string)
tf.Tensor([b'Brown Fox' b'lazy dog'], shape=(2,), dtype=string)
Instead of just printing tensor, you can compute with it:
for tensor in ds:
print(hub_layer(tensor))
which outputs 2 tensors of shape (2,20) each.
For more, see https://www.tensorflow.org/guide/data.
Related
I am trying to apply layerwise relevance propagation (LRP) following some examples and tutorials, in particular this one and this one. However, I am struggling to get the relevances for the max_pooling layers. In particular, the problem appears when using gen_nn_ops.max_pool_grad_v2:
gen_nn_ops.max_pool_grad_v2(orig_input=a, orig_output=z, grad=s,
ksize=ksize,
strides=[1, 2, 2, 1], padding='VALID')
where the inputs are:
a : <KerasTensor: shape=(None, 6, 8, 512) dtype=float32 (created by layer 'activation_23')>
z : <KerasTensor: shape=(None, 3, 4, 512) dtype=float32 (created by layer 'tf.compat.v1.nn.max_pool_1')>
s: <KerasTensor: shape=(None, 3, 4, 512) dtype=float32 (created by layer 'tf.math.truediv_23')>
The error I got is:
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
/scratch/local/26230143/ipykernel_15814/2576584237.py in <module>
----> 1 gen_nn_ops.max_pool_grad_v2(orig_input=a, orig_output=z, grad=s,
2 ksize=kk,
3 strides=[1, 2, 2, 1], padding='VALID')
~/.local/lib/python3.9/site-packages/tensorflow/python/ops/gen_nn_ops.py in max_pool_grad_v2(orig_input, orig_output, grad, ksize, strides, padding, data_format, name)
6251 pass
6252 try:
-> 6253 return max_pool_grad_v2_eager_fallback(
6254 orig_input, orig_output, grad, ksize, strides, padding=padding,
6255 data_format=data_format, name=name, ctx=_ctx)
~/.local/lib/python3.9/site-packages/tensorflow/python/ops/gen_nn_ops.py in max_pool_grad_v2_eager_fallback(orig_input, orig_output, grad, ksize, strides, padding, data_format, name, ctx)
6283 data_format = "NHWC"
6284 data_format = _execute.make_str(data_format, "data_format")
-> 6285 _attr_T, _inputs_T = _execute.args_to_matching_eager([orig_input, orig_output, grad], ctx, [_dtypes.float32, _dtypes.float64, _dtypes.int32, _dtypes.uint8, _dtypes.int16, _dtypes.int8, _dtypes.int64, _dtypes.bfloat16, _dtypes.uint16, _dtypes.half, _dtypes.uint32, _dtypes.uint64, ], _dtypes.float32)
6286 (orig_input, orig_output, grad) = _inputs_T
6287 ksize = _ops.convert_to_tensor(ksize, _dtypes.int32)
~/.local/lib/python3.9/site-packages/tensorflow/python/eager/execute.py in args_to_matching_eager(l, ctx, allowed_dtypes, default_dtype)
254 # not list allowed dtypes, in which case we should skip this.
255 if dtype is None and allowed_dtypes:
--> 256 tensor = ops.convert_to_tensor(t, ctx=ctx)
257 # If we did not match an allowed dtype, try again with the default
258 # dtype. This could be because we have an empty tensor and thus we
~/.local/lib/python3.9/site-packages/tensorflow/python/profiler/trace.py in wrapped(*args, **kwargs)
181 with Trace(trace_name, **trace_kwargs):
182 return func(*args, **kwargs)
--> 183 return func(*args, **kwargs)
184
185 return wrapped
~/.local/lib/python3.9/site-packages/tensorflow/python/framework/ops.py in convert_to_tensor(value, dtype, name, as_ref, preferred_dtype, dtype_hint, ctx, accepted_result_types)
1693
1694 if ret is None:
-> 1695 ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref)
1696
1697 if ret is NotImplemented:
~/.local/lib/python3.9/site-packages/tensorflow/python/framework/constant_op.py in _constant_tensor_conversion_function(v, dtype, name, as_ref)
341 as_ref=False):
342 _ = as_ref
--> 343 return constant(v, dtype=dtype, name=name)
344
345
~/.local/lib/python3.9/site-packages/tensorflow/python/framework/constant_op.py in constant(value, dtype, shape, name)
265 ValueError: if called on a symbolic tensor.
266 """
--> 267 return _constant_impl(value, dtype, shape, name, verify_shape=False,
268 allow_broadcast=True)
269
~/.local/lib/python3.9/site-packages/tensorflow/python/framework/constant_op.py in _constant_impl(value, dtype, shape, name, verify_shape, allow_broadcast)
277 with trace.Trace("tf.constant"):
278 return _constant_eager_impl(ctx, value, dtype, shape, verify_shape)
--> 279 return _constant_eager_impl(ctx, value, dtype, shape, verify_shape)
280
281 g = ops.get_default_graph()
~/.local/lib/python3.9/site-packages/tensorflow/python/framework/constant_op.py in _constant_eager_impl(ctx, value, dtype, shape, verify_shape)
302 def _constant_eager_impl(ctx, value, dtype, shape, verify_shape):
303 """Creates a constant on the current device."""
--> 304 t = convert_to_eager_tensor(value, ctx, dtype)
305 if shape is None:
306 return t
~/.local/lib/python3.9/site-packages/tensorflow/python/framework/constant_op.py in convert_to_eager_tensor(value, ctx, dtype)
100 dtype = dtypes.as_dtype(dtype).as_datatype_enum
101 ctx.ensure_initialized()
--> 102 return ops.EagerTensor(value, ctx.device_name, dtype)
103
104
~/.local/lib/python3.9/site-packages/keras/engine/keras_tensor.py in __array__(self, dtype)
252
253 def __array__(self, dtype=None):
--> 254 raise TypeError(
255 f'You are passing {self}, an intermediate Keras symbolic input/output, '
256 'to a TF API that does not allow registering custom dispatchers, such '
TypeError: You are passing KerasTensor(type_spec=TensorSpec(shape=(None, 6, 8, 512),
dtype=tf.float32, name=None), name='activation_23/Relu:0', description="created by layer
'activation_23'"), an intermediate Keras symbolic input/output, to a TF API that does not allow
registering custom dispatchers, such as `tf.cond`, `tf.function`, gradient tapes, or
`tf.map_fn`. Keras Functional model construction only supports TF API calls that *do* support
dispatching, such as `tf.math.add` or `tf.reshape`. Other APIs cannot be called directly on
symbolic Kerasinputs/outputs. You can work around this limitation by putting the operation in a
custom Keras layer `call` and calling that layer on this symbolic input/output.
I am assuming that somehow a, z and s must be tf.Tensor (am I wrong)? (instead of KerasTensor) , but I don't really know and neither how to get around this issue. I read that using:
from tensorflow.python.framework.ops import disable_eager_execution
disable_eager_execution()
might work, but it is not working for me. I'd really appreaciate any idea, suggestion here!
Thank you very much in advance,
I have defined a new layer to be put as an input layer using Keras. The code is:
class layer(tensorflow.keras.layers.Layer):
def __init__(self):
super(layer, self).__init__()
H_init = tf.random_normal_initializer()
self.H = tf.Variable(
initial_value=H_init(shape=(1,), dtype="float32"),
trainable=True,
)
b_init = tf.zeros_initializer()
self.b = tf.Variable(
initial_value=b_init(shape=(1,), dtype="float32"), trainable=True
)
n_init = tf.zeros_initializer()
self.n = tf.Variable(
initial_value=n_init(shape=(1,), dtype="float32"), trainable=True
)
def call(self, z):
return self.H**2 / (1+(1/self.b)**(2/self.n)) *(1+((1+z)/self.b)**(2/self.n))
I intend to put this layer as input in my generation callback function, which is
`def callback_generation(ga_instance):
print("Generation"= {generation}".format(generation=ga_instance.generations_completed))
print("Fitness =
{fitness}".format(fitness=ga_instance.best_solution()[1]))
inputs = tensorflow.keras.Input(shape=(1,), name="inputs")
targets = tensorflow.keras.Input(shape=(1,), name="targets")
logits = tensorflow.keras.layers.Dense(15)(inputs)
predictions = layer(name="predictions")(logits, targets)
model = keras.Model(inputs=[inputs, targets],
outputs=predictions)
data = {
"inputs": z,
"targets": H_z,
}
model = tensorflow.keras.Sequential(inputs=input_layer,
outputs=output_layer)
weights_vector =
tensorflow.pygad.kerasga.model_weights_as_vector(model=model)
keras_ga = pygad.kerasga.KerasGA(model=model,
num_solutions=12)
model.summary()`
This gives me an error reporting that the tf__call() method takes 2 positional arguments but 3 were given.
This is the detailed error traceback:
TypeError Traceback (most
recent call last)
<ipython-input-101-e09c7d4f3228> in <module>
20 targets = tensorflow.keras.Input(shape=(1,),
name="targets")
21 logits = tensorflow.keras.layers.Dense(15)(inputs)
---> 22 predictions = layer(name="predictions")(logits,
targets)
23
24 model = keras.Model(inputs=[inputs, targets],
outputs=predictions)
~/anaconda3/lib/python3.7/site-packages/tensorflow/python/keras/engine/base_layer.py in
__call__(self, *args, **kwargs)
950 if _in_functional_construction_mode(self, inputs,
args, kwargs, input_list):
951 return self._functional_construction_call(inputs,
args, kwargs,
--> 952
input_list)
953
954 # Maintains info about the `Layer.call` stack.
~/anaconda3/lib/python3.7/site-
packages/tensorflow/python/keras/engine/base_layer.py in
_functional_construction_call(self, inputs, args, kwargs,
input_list)
1089 # Check input assumptions set after layer
building, e.g. input shape.
1090 outputs = self._keras_tensor_symbolic_call(
-> 1091 inputs, input_masks, args, kwargs)
1092
1093 if outputs is None:
~/anaconda3/lib/python3.7/site-
packages/tensorflow/python/keras/engine/base_layer.py in
_keras_tensor_symbolic_call(self, inputs, input_masks, args,
kwargs)
820 return
nest.map_structure(keras_tensor.KerasTensor, output_signature)
821 else:
--> 822 return self._infer_output_signature(inputs, args,
kwargs, input_masks)
823
824 def _infer_output_signature(self, inputs, args,
kwargs, input_masks):
~/anaconda3/lib/python3.7/site-
packages/tensorflow/python/keras/engine/base_layer.py in
_infer_output_signature(self, inputs, args, kwargs,
input_masks)
861 # TODO(kaftan): do we maybe_build here, or
have we already done it?
862 self._maybe_build(inputs)
--> 863 outputs = call_fn(inputs, *args, **kwargs)
864
865 self._handle_activity_regularization(inputs,
outputs)
~/anaconda3/lib/python3.7/site-
packages/tensorflow/python/autograph/impl/api.py in
wrapper(*args, **kwargs)
668 except Exception as e: # pylint:disable=broad-
except
669 if hasattr(e, 'ag_error_metadata'):
--> 670 raise e.ag_error_metadata.to_exception(e)
671 else:
672 raise
TypeError: in user code:
TypeError: tf__call() takes 2 positional arguments but 3 were given
I am trying to make a Keras layer that returns None in its tuple.
class transformer_IO(tf.keras.layers.Layer):
def call(self, input):
return (input, None, None, None)
However, when I try to compile with this error, I get
AttributeError: 'NoneType' object has no attribute 'shape'
Here is an example
!pip install transformers
from transformers import TFBertModel
import tensorflow as tf
from copy import deepcopy
class transformer_IO(tf.keras.layers.Layer):
def call(self, input):
return (input, None, None, None)
def get_functional_model_protoFix():
bioRoberta_f = TFBertModel.from_pretrained('bert-base-uncased', from_pt=True)
Q_Tlayer0_f = deepcopy(bioRoberta_f.layers[0].encoder.layer[8])
Q_Tlayer0_f._name = Q_Tlayer0_f._name + 'Query_f'
Q_Tlayer1_f = deepcopy(bioRoberta_f.layers[0].encoder.layer[9])
Q_Tlayer1_f._name = Q_Tlayer1_f._name + 'Query_f'
transIO = transformer_IO()
inputIds = tf.keras.Input(shape=(None,), dtype=tf.int32, name='input_Q')
Q_outputs = bioRoberta_f(inputIds)[0]
Q_outputs = transIO(Q_outputs)
Q_outputs = Q_Tlayer0_f(Q_outputs)[0]
Q_outputs = transIO(Q_outputs)
Q_outputs = Q_Tlayer1_f(Q_outputs)[0]
modelNew = tf.keras.Model(inputs=inputIds, outputs=Q_outputs)
return modelNew
model_functional = get_functional_model_protoFix()
model_functional.compile(loss=loss_fn,
optimizer=tfa.optimizers.AdamW(weight_decay=1e-4, learning_rate=1e-5,
epsilon=1e-06))
Full error message
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-35-a029c18cecf9> in <module>()
----> 1 model_functional_new = get_functional_model_protoFix()
2 model_functional_new.compile(loss=loss_fn,
3 optimizer=tfa.optimizers.AdamW(weight_decay=1e-4, learning_rate=1e-5,
4 epsilon=1e-06))
7 frames
<ipython-input-34-693ee085f848> in get_functional_model_protoFix()
13
14 Q_outputs = bioRoberta_f(inputIds)[0]
---> 15 Q_outputs = transIO(Q_outputs)
16 Q_outputs = Q_Tlayer0_f(Q_outputs)[0]
17 Q_outputs = transIO(Q_outputs)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/base_layer.py in __call__(self, *args, **kwargs)
952 kwargs.pop('mask')
953 inputs, outputs = self._set_connectivity_metadata_(
--> 954 inputs, outputs, args, kwargs)
955 self._handle_activity_regularization(inputs, outputs)
956 self._set_mask_metadata(inputs, outputs, input_masks)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/base_layer.py in _set_connectivity_metadata_(self, inputs, outputs, args, kwargs)
2312 # This updates the layer history of the output tensor(s).
2313 self._add_inbound_node(
-> 2314 input_tensors=inputs, output_tensors=outputs, arguments=arguments)
2315 return inputs, outputs
2316
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/base_layer.py in _add_inbound_node(self, input_tensors, output_tensors, arguments)
2342 input_tensors=input_tensors,
2343 output_tensors=output_tensors,
-> 2344 arguments=arguments)
2345
2346 # Update tensor history metadata.
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/node.py in __init__(self, outbound_layer, inbound_layers, node_indices, tensor_indices, input_tensors, output_tensors, arguments)
108 self.input_shapes = nest.map_structure(backend.int_shape, input_tensors)
109 # Nested structure of shape tuples, shapes of output_tensors.
--> 110 self.output_shapes = nest.map_structure(backend.int_shape, output_tensors)
111
112 # Optional keyword arguments to layer's `call`.
/usr/local/lib/python3.6/dist-packages/tensorflow/python/util/nest.py in map_structure(func, *structure, **kwargs)
615
616 return pack_sequence_as(
--> 617 structure[0], [func(*x) for x in entries],
618 expand_composites=expand_composites)
619
/usr/local/lib/python3.6/dist-packages/tensorflow/python/util/nest.py in <listcomp>(.0)
615
616 return pack_sequence_as(
--> 617 structure[0], [func(*x) for x in entries],
618 expand_composites=expand_composites)
619
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/backend.py in int_shape(x)
1201 """
1202 try:
-> 1203 shape = x.shape
1204 if not isinstance(shape, tuple):
1205 shape = tuple(shape.as_list())
AttributeError: 'NoneType' object has no attribute 'shape'
I Was following a post on 'Training a transformer model for a chatbot with TensorFlow 2.0'. I have encountered an error on my local machine although the code seems to work fine in colab. Below is the code snippet.
def encoder_layer(units, d_model, num_heads, dropout, name="encoder_layer"):
inputs = tf.keras.Input(shape=(None, d_model), name="inputs")
padding_mask = tf.keras.Input(shape=(1, 1, None), name="padding_mask")
attention = MultiHeadAttention(
d_model, num_heads, name="attention")({
'query': inputs,
'key': inputs,
'value': inputs,
'mask': padding_mask
})
attention = tf.keras.layers.Dropout(rate=dropout)(attention)
attention = tf.keras.layers.LayerNormalization(
epsilon=1e-6)(inputs + attention)
outputs = tf.keras.layers.Dense(units=units, activation='relu')(attention)
outputs = tf.keras.layers.Dense(units=d_model)(outputs)
outputs = tf.keras.layers.Dropout(rate=dropout)(outputs)
outputs = tf.keras.layers.LayerNormalization(
epsilon=1e-6)(attention + outputs)
return tf.keras.Model(
inputs=[inputs, padding_mask], outputs=outputs, name=name)
I called above function with the following function call;
sample_encoder_layer = encoder_layer(
units=512,
d_model=128,
num_heads=4,
dropout=0.3,
name="sample_encoder_layer")
Below is the traceback of the error:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
~/anaconda3/envs/tf-chatbot/lib/python3.6/site-packages/tensorflow/python/framework/tensor_util.py in _AssertCompatible(values, dtype)
323 try:
--> 324 fn(values)
325 except ValueError as e:
~/anaconda3/envs/tf-chatbot/lib/python3.6/site-packages/tensorflow/python/framework/tensor_util.py in _check_not_tensor(values)
275 def _check_not_tensor(values):
--> 276 _ = [_check_failed(v) for v in nest.flatten(values)
277 if isinstance(v, ops.Tensor)]
~/anaconda3/envs/tf-chatbot/lib/python3.6/site-packages/tensorflow/python/framework/tensor_util.py in <listcomp>(.0)
276 _ = [_check_failed(v) for v in nest.flatten(values)
--> 277 if isinstance(v, ops.Tensor)]
278 # pylint: enable=invalid-name
~/anaconda3/envs/tf-chatbot/lib/python3.6/site-packages/tensorflow/python/framework/tensor_util.py in _check_failed(v)
247 # it is safe to use here.
--> 248 raise ValueError(v)
249
ValueError: Tensor("attention_1/Identity:0", shape=(None, None, 128), dtype=float32)
During handling of the above exception, another exception occurred:
TypeError Traceback (most recent call last)
<ipython-input-20-3fa05a9bbfda> in <module>
----> 1 sample_encoder_layer = encoder_layer(units=512, d_model=128, num_heads=4, dropout=0.3, name='sample_encoder_layer')
2
3 tf.keras.utils.plot_model(
4 sample_encoder_layer, to_file='encoder_layer.png', show_shapes=True)
<ipython-input-18-357ca53de1c0> in encoder_layer(units, d_model, num_heads, dropout, name)
10 'mask': padding_mask
11 })
---> 12 attention = tf.keras.layers.Dropout(rate=dropout)(attention)
13 attention = tf.keras.layers.LayerNormalization(
14 epsilon=1e-6)(inputs + attention)
~/anaconda3/envs/tf-chatbot/lib/python3.6/site-packages/tensorflow/python/keras/engine/base_layer.py in __call__(self, *args, **kwargs)
920 not base_layer_utils.is_in_eager_or_tf_function()):
921 with auto_control_deps.AutomaticControlDependencies() as acd:
--> 922 outputs = call_fn(cast_inputs, *args, **kwargs)
923 # Wrap Tensors in `outputs` in `tf.identity` to avoid
924 # circular dependencies.
~/anaconda3/envs/tf-chatbot/lib/python3.6/site-packages/tensorflow/python/keras/layers/core.py in call(self, inputs, training)
209 output = tf_utils.smart_cond(training,
210 dropped_inputs,
--> 211 lambda: array_ops.identity(inputs))
212 return output
213
~/anaconda3/envs/tf-chatbot/lib/python3.6/site-packages/tensorflow/python/keras/utils/tf_utils.py in smart_cond(pred, true_fn, false_fn, name)
63 pred, true_fn=true_fn, false_fn=false_fn, name=name)
64 return smart_module.smart_cond(
---> 65 pred, true_fn=true_fn, false_fn=false_fn, name=name)
66
67
~/anaconda3/envs/tf-chatbot/lib/python3.6/site-packages/tensorflow/python/framework/smart_cond.py in smart_cond(pred, true_fn, false_fn, name)
57 else:
58 return control_flow_ops.cond(pred, true_fn=true_fn, false_fn=false_fn,
---> 59 name=name)
60
61
~/anaconda3/envs/tf-chatbot/lib/python3.6/site-packages/tensorflow/python/util/deprecation.py in new_func(*args, **kwargs)
505 'in a future version' if date is None else ('after %s' % date),
506 instructions)
--> 507 return func(*args, **kwargs)
508
509 doc = _add_deprecated_arg_notice_to_docstring(
~/anaconda3/envs/tf-chatbot/lib/python3.6/site-packages/tensorflow/python/ops/control_flow_ops.py in cond(pred, true_fn, false_fn, strict, name, fn1, fn2)
1175 if (util.EnableControlFlowV2(ops.get_default_graph()) and
1176 not context.executing_eagerly()):
-> 1177 return cond_v2.cond_v2(pred, true_fn, false_fn, name)
1178
1179 # We needed to make true_fn/false_fn keyword arguments for
~/anaconda3/envs/tf-chatbot/lib/python3.6/site-packages/tensorflow/python/ops/cond_v2.py in cond_v2(pred, true_fn, false_fn, name)
82 true_name, collections=ops.get_default_graph()._collections), # pylint: disable=protected-access
83 add_control_dependencies=add_control_dependencies,
---> 84 op_return_value=pred)
85 false_graph = func_graph_module.func_graph_from_py_func(
86 false_name,
~/anaconda3/envs/tf-chatbot/lib/python3.6/site-packages/tensorflow/python/framework/func_graph.py in func_graph_from_py_func(name, python_func, args, kwargs, signature, func_graph, autograph, autograph_options, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, override_flat_arg_shapes)
979 _, original_func = tf_decorator.unwrap(python_func)
980
--> 981 func_outputs = python_func(*func_args, **func_kwargs)
982
983 # invariant: `func_outputs` contains only Tensors, CompositeTensors,
~/anaconda3/envs/tf-chatbot/lib/python3.6/site-packages/tensorflow/python/keras/layers/core.py in dropped_inputs()
205 noise_shape=self._get_noise_shape(inputs),
206 seed=self.seed,
--> 207 rate=self.rate)
208
209 output = tf_utils.smart_cond(training,
~/anaconda3/envs/tf-chatbot/lib/python3.6/site-packages/tensorflow/python/util/deprecation.py in new_func(*args, **kwargs)
505 'in a future version' if date is None else ('after %s' % date),
506 instructions)
--> 507 return func(*args, **kwargs)
508
509 doc = _add_deprecated_arg_notice_to_docstring(
~/anaconda3/envs/tf-chatbot/lib/python3.6/site-packages/tensorflow/python/ops/nn_ops.py in dropout(x, keep_prob, noise_shape, seed, name, rate)
4341 raise ValueError("You must provide a rate to dropout.")
4342
-> 4343 return dropout_v2(x, rate, noise_shape=noise_shape, seed=seed, name=name)
4344
4345
~/anaconda3/envs/tf-chatbot/lib/python3.6/site-packages/tensorflow/python/ops/nn_ops.py in dropout_v2(x, rate, noise_shape, seed, name)
4422 raise ValueError("rate must be a scalar tensor or a float in the "
4423 "range [0, 1), got %g" % rate)
-> 4424 x = ops.convert_to_tensor(x, name="x")
4425 x_dtype = x.dtype
4426 if not x_dtype.is_floating:
~/anaconda3/envs/tf-chatbot/lib/python3.6/site-packages/tensorflow/python/framework/ops.py in convert_to_tensor(value, dtype, name, as_ref, preferred_dtype, dtype_hint, ctx, accepted_result_types)
1339
1340 if ret is None:
-> 1341 ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref)
1342
1343 if ret is NotImplemented:
~/anaconda3/envs/tf-chatbot/lib/python3.6/site-packages/tensorflow/python/framework/constant_op.py in _constant_tensor_conversion_function(v, dtype, name, as_ref)
319 as_ref=False):
320 _ = as_ref
--> 321 return constant(v, dtype=dtype, name=name)
322
323
~/anaconda3/envs/tf-chatbot/lib/python3.6/site-packages/tensorflow/python/framework/constant_op.py in constant(value, dtype, shape, name)
260 """
261 return _constant_impl(value, dtype, shape, name, verify_shape=False,
--> 262 allow_broadcast=True)
263
264
~/anaconda3/envs/tf-chatbot/lib/python3.6/site-packages/tensorflow/python/framework/constant_op.py in _constant_impl(value, dtype, shape, name, verify_shape, allow_broadcast)
298 tensor_util.make_tensor_proto(
299 value, dtype=dtype, shape=shape, verify_shape=verify_shape,
--> 300 allow_broadcast=allow_broadcast))
301 dtype_value = attr_value_pb2.AttrValue(type=tensor_value.tensor.dtype)
302 const_tensor = g._create_op_internal( # pylint: disable=protected-access
~/anaconda3/envs/tf-chatbot/lib/python3.6/site-packages/tensorflow/python/framework/tensor_util.py in make_tensor_proto(values, dtype, shape, verify_shape, allow_broadcast)
449 nparray = np.empty(shape, dtype=np_dt)
450 else:
--> 451 _AssertCompatible(values, dtype)
452 nparray = np.array(values, dtype=np_dt)
453 # check to them.
~/anaconda3/envs/tf-chatbot/lib/python3.6/site-packages/tensorflow/python/framework/tensor_util.py in _AssertCompatible(values, dtype)
326 [mismatch] = e.args
327 if dtype is None:
--> 328 raise TypeError("Expected any non-tensor type, got a tensor instead.")
329 else:
330 raise TypeError("Expected %s, got %s of type '%s' instead." %
TypeError: Expected any non-tensor type, got a tensor instead.
I had this error when I converted a function argument of int datatype to tf.constant . I resolved the issue in my case by undoing it. I faced this issue when I was converting TF1 codes to TF2.3.0 . Looking at your error trace I can see it's pointed to handling some constants in tf-chatbot. Kindly check how that constant is handled.
This is a fixed issue in TensorFlow 2.3.0 onwards. Can you upgrade your TensorFlow version?
pip install tensorflow==2.3.0
pip install --upgrade tensorflow
I have sequential data where each element is a vector as follows:
x_i = [ 0. , 0. , 0. , 0.03666667, 0. ,
0. , 0.95666667, 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0.00666667, 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. ]
The vector represents the distribution of time (over a 5-minute block, for example) a user spent on a set of activities. The task is to predict the distribution of the tasks over the next time step t+1 given the previous N steps (t-N : t). Consequently, my input shape is:
X.shape = (batch_size, timesteps, input_length), and an example would be (32, 10, 41) where we have a batch size of 32, 10 timesteps in the past and the each element has a dimenionsality of 41.
To do this I'm using an LSTM built using Keras. Before passing this input to the LSTM though, I would like to create something similar to an Embedding layer that converts this representation into a dense high-dimensional vector similar to what's done in NLP and embedding one-hot vectors of words into an embedding space using the embedding layer. However, the Embedding layer in Keras only accepts integer inputs (or one-hot representations), and in my case what I would like to achieve is a matrix product between the input vector X (which is composed of several x_i as it represents time-series data) and an Embedding Matrix V. To illustrate:
X.shape = (10, 41)
Embedding matrix shape = (41, 100)
The role is to convert every element in X from it's 41 dimenional sparse representation into 100 dimensions via the matrix multiplication, and this should be done for all elements in the batch input.
To do that I've done the following
class EmbeddingMatrix(Layer):
def __init__(self, output_dim, **kwargs):
self.output_dim = output_dim
super(EmbeddingMatrix, self).__init__(**kwargs)
def build(self, input_shape):
# Create a trainable weight variable for this layer.
self.kernel = self.add_weight(name='kernel',
shape=(input_shape[2], self.output_dim),
initializer='uniform',
trainable=True)
super(EmbeddingMatrix, self).build(input_shape) # Be sure to call this somewhere!
def call(self, x, mask=None):
return K.dot(x, self.kernel)
def compute_output_shape(self, input_shape):
return (input_shape[0], input_shape[1], self.output_dim)
And the LSTM network I'm using is as follows:
inputs = Input(shape=(FLAGS.look_back, FLAGS.inputlength))
inputs_embedded = EmbeddingMatrix(N_EMBEDDING)(inputs)
encoded = LSTM(N_HIDDEN, dropout=0.2, recurrent_dropout=0.2)(inputs_embedded)
dense = TimeDistributed(Dense(N_DENSE, activation='sigmoid'))(dropout)
dense_output = TimeDistributed(Dense(FLAGS.inputlength, activation='softmax'))(dense)
embedder = Model(inputs, inputs_embedded)
model = Model(inputs, dense_output)
model.compile(loss='mean_squared_error', optimizer = RMSprop(lr=LEARNING_RATE, clipnorm=5))
However, when running I get the following error:
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-24-5a28b4f3b6b9> in <module>()
5 inputs_embedded = EmbeddingMatrix(N_EMBEDDING)(inputs)
6
----> 7 encoded = LSTM(N_HIDDEN, dropout=0.2, recurrent_dropout=0.2)(inputs_embedded)
8
9 dense = TimeDistributed(Dense(N_DENSE, activation='sigmoid'))(dropout)
/Users/asturkmani/anaconda3/lib/python3.5/site-packages/keras/layers/recurrent.py in __call__(self, inputs, initial_state, **kwargs)
260 # modify the input spec to include the state.
261 if initial_state is None:
--> 262 return super(Recurrent, self).__call__(inputs, **kwargs)
263
264 if not isinstance(initial_state, (list, tuple)):
/Users/asturkmani/anaconda3/lib/python3.5/site-packages/keras/engine/topology.py in __call__(self, inputs, **kwargs)
567 '`layer.build(batch_input_shape)`')
568 if len(input_shapes) == 1:
--> 569 self.build(input_shapes[0])
570 else:
571 self.build(input_shapes)
/Users/asturkmani/anaconda3/lib/python3.5/site-packages/keras/layers/recurrent.py in build(self, input_shape)
1041 initializer=bias_initializer,
1042 regularizer=self.bias_regularizer,
-> 1043 constraint=self.bias_constraint)
1044 else:
1045 self.bias = None
/Users/asturkmani/anaconda3/lib/python3.5/site-packages/keras/legacy/interfaces.py in wrapper(*args, **kwargs)
85 warnings.warn('Update your `' + object_name +
86 '` call to the Keras 2 API: ' + signature, stacklevel=2)
---> 87 return func(*args, **kwargs)
88 wrapper._original_function = func
89 return wrapper
/Users/asturkmani/anaconda3/lib/python3.5/site-packages/keras/engine/topology.py in add_weight(self, name, shape, dtype, initializer, regularizer, trainable, constraint)
389 if dtype is None:
390 dtype = K.floatx()
--> 391 weight = K.variable(initializer(shape), dtype=dtype, name=name)
392 if regularizer is not None:
393 self.add_loss(regularizer(weight))
/Users/asturkmani/anaconda3/lib/python3.5/site-packages/keras/layers/recurrent.py in bias_initializer(shape, *args, **kwargs)
1033 self.bias_initializer((self.units,), *args, **kwargs),
1034 initializers.Ones()((self.units,), *args, **kwargs),
-> 1035 self.bias_initializer((self.units * 2,), *args, **kwargs),
1036 ])
1037 else:
/Users/asturkmani/anaconda3/lib/python3.5/site-packages/keras/backend/tensorflow_backend.py in concatenate(tensors, axis)
1721 return tf.sparse_concat(axis, tensors)
1722 else:
-> 1723 return tf.concat([to_dense(x) for x in tensors], axis)
1724
1725
/Users/asturkmani/anaconda3/lib/python3.5/site-packages/tensorflow/python/ops/array_ops.py in concat(concat_dim, values, name)
1073 ops.convert_to_tensor(concat_dim,
1074 name="concat_dim",
-> 1075 dtype=dtypes.int32).get_shape(
1076 ).assert_is_compatible_with(tensor_shape.scalar())
1077 return identity(values[0], name=scope)
/Users/asturkmani/anaconda3/lib/python3.5/site-packages/tensorflow/python/framework/ops.py in convert_to_tensor(value, dtype, name, as_ref, preferred_dtype)
667
668 if ret is None:
--> 669 ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref)
670
671 if ret is NotImplemented:
/Users/asturkmani/anaconda3/lib/python3.5/site-packages/tensorflow/python/framework/constant_op.py in _constant_tensor_conversion_function(v, dtype, name, as_ref)
174 as_ref=False):
175 _ = as_ref
--> 176 return constant(v, dtype=dtype, name=name)
177
178
/Users/asturkmani/anaconda3/lib/python3.5/site-packages/tensorflow/python/framework/constant_op.py in constant(value, dtype, shape, name, verify_shape)
163 tensor_value = attr_value_pb2.AttrValue()
164 tensor_value.tensor.CopyFrom(
--> 165 tensor_util.make_tensor_proto(value, dtype=dtype, shape=shape, verify_shape=verify_shape))
166 dtype_value = attr_value_pb2.AttrValue(type=tensor_value.tensor.dtype)
167 const_tensor = g.create_op(
/Users/asturkmani/anaconda3/lib/python3.5/site-packages/tensorflow/python/framework/tensor_util.py in make_tensor_proto(values, dtype, shape, verify_shape)
365 nparray = np.empty(shape, dtype=np_dt)
366 else:
--> 367 _AssertCompatible(values, dtype)
368 nparray = np.array(values, dtype=np_dt)
369 # check to them.
/Users/asturkmani/anaconda3/lib/python3.5/site-packages/tensorflow/python/framework/tensor_util.py in _AssertCompatible(values, dtype)
300 else:
301 raise TypeError("Expected %s, got %s of type '%s' instead." %
--> 302 (dtype.name, repr(mismatch), type(mismatch).__name__))
303
304
TypeError: Expected int32, got list containing Tensors of type '_Message' instead.
What could be causing this and what would be the best way to implement such a weighted embedding matrix?