Related
tokenizer = Tokenizer(num_words=5000)
tokenizer.fit_on_texts(X1_train)
X1_train = tokenizer.texts_to_sequences(X1_train)
X1_val = tokenizer.texts_to_sequences(X1_val)
X1_test = tokenizer.texts_to_sequences(X1_test)
vocab_size = len(tokenizer.word_index) + 1
maxlen = 5000
X1_train = pad_sequences(X1_train, padding='post', maxlen=maxlen)
X1_val = pad_sequences(X1_val, padding='post', maxlen=maxlen)
X1_test = pad_sequences(X1_test, padding='post', maxlen=maxlen)
embeddings_dictionary = dict()
df_g = pd.read_csv('gs://----------/glove.6B.100d.txt', sep=" ", quoting=3, header=None, index_col=0)
embeddings_dictionary = {key: val.values for key, val in df_g.T.items()}
embedding_matrix = zeros((vocab_size, 100))
for word, index in tokenizer.word_index.items():
embedding_vector = embeddings_dictionary.get(word)
if embedding_vector is not None:
embedding_matrix[index] = embedding_vector
input_2_col_list= [x1,x2,...................., x30]
X2_train = X_train[input_2_col_list].values
X2_val = X_val[input_2_col_list].values
X2_test = X_test[[input_2_col_list].values
input_1 = Input(shape=(maxlen,))
input_2 = Input(shape=(30,))
embedding_layer = Embedding(vocab_size, 100, weights=[embedding_matrix], trainable=False)(input_1)
Bi_layer= Bidirectional(LSTM(128, return_sequences=True, dropout=0.15, recurrent_dropout=0.15))(embedding_layer) # Dimn shd be (None,200,128)
con_layer = Conv1D(64, kernel_size=3, padding='valid', kernel_initializer='glorot_uniform')(Bi_layer)
avg_pool = GlobalAveragePooling1D()(con_layer)
max_pool = GlobalMaxPooling1D()(con_layer)
dense_layer_1 = Dense(64, activation='relu')(input_2)
dense_layer_2 = Dense(64, activation='relu')(dense_layer_1)
concat_layer = Concatenate()([avg_pool,max_pool, dense_layer_2])
dense_layer_3 = Dense(50, activation='relu')(concat_layer)
output = Dense(2, activation='softmax')(dense_layer_3)
model = Model(inputs=[input_1, input_2], outputs=output)
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['acc',f1_m,precision_m, recall_m])
print(model.summary())
history = model.fit(x=[X1_train, X2_train], y=y_train, batch_size=30, epochs=10, verbose=1, validation_data=([X1_val,X2_val],y_val))
loss, accuracy, f1_score, precision, recall = model.evaluate(x=[X1_test, X2_test], y=y_test, verbose=0)
model.save('gs://----------/Tuned_hybrid_GCP_5000_CASETYPE_8_9.tf')
##################################################
loaded_model=tf.keras.models.load_model( 'gs://----------/Tuned_hybrid_GCP_5000_CASETYPE_8_9.tf', custom_objects={"f1_m": f1_m , "recall_m": recall_m, "precision_m": precision_m } )
loss, accuracy, f1_score, precision, recall = loaded_model.evaluate(x=[X1_test, X2_test], y=y_test, verbose=0) ###This is getting no error BUT the predictions are wrong
y_pred = loaded_model.predict(x=[X1_test, X2_test], batch_size=64, verbose=1)
y_pred_bool = np.argmax(y_pred, axis=1) ###This is getting no error BUT the predictions are wrong
##################################################################
import tensorflow_hub as hub
x=[X1_test, X2_test]
loaded_model_2 = tf.keras.Sequential([hub.KerasLayer('gs:---------------/Tuned_hybrid_GCP_100_CASETYPE_8_11_save.tf')])
loaded_model_2.build(x.shape) #### Getting an error
y_pred_2 = loaded_model_2.predict(x=[X1_test, X2_test], batch_size=64, verbose=1)
y_pred_bool_2 = np.argmax(y_pred_2, axis=1)
###################################################
#### Inside of the model folder the files and dirs are: assets/, variables/, saved_model.pb, keras_metadata.pb
#### Using 'us-docker.pkg.dev/vertex-ai/training/tf-gpu.2-8:latest' to train the model on Vertex AI
I have tried multiple saving a loading function with custom objects, but not of them are working properly
The working loaded model is predicting, but the outputs are not accurate. I have tested the similar TEST data to predict on the loaded model with another test script. The predictions are not matching after I loaded the model.
similar issues on StackOverflow: 'https://stackoverflow.com/questions/68937973/how-can-i-fix-the-problem-of-loading-the-model-to-get-new-predictions'
I would like to implement the built in TensorFlow addons version of triplet loss with a tutorial here for a siamese network, however I can't seem to get it quite right. No matter how I wrangle the code another error pops up, currently
TypeError: Could not build a TypeSpec for <KerasTensor: shape=(3, None, 256) dtype=float32 (created by layer 'tf.math.l2_normalize_4')> with type KerasTensor.
Note, this is just a token implementation kept simple in order to understand how to implement Triplet Loss. I don't expect the model to actually learn anything.
Code:
!pip install -U tensorflow-addons
import io
import numpy as np
import tensorflow as tf
import tensorflow_addons as tfa
from tensorflow.keras.datasets import fashion_mnist
# Dummy data to pass to the model
(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()
train_data = [x_train[:20000],x_train[20000:40000],x_train[40000:]]
train_labels = [y_train[:20000],y_train[20000:40000],y_train[40000:]]
train_data = tf.convert_to_tensor(train_data)
train_labels = tf.convert_to_tensor(train_labels)
#train_data = np.asarray(train_data)
#train_labels = np.asarray(train_labels)
def create_model(input_shape):
inp = tf.keras.layers.Input(shape=input_shape)
x = tf.keras.layers.Conv2D(filters=64, kernel_size=2, padding='same', activation='relu', input_shape=(28,28,1))(inp)
x = tf.keras.layers.MaxPooling2D(pool_size=2)(x)
x = tf.keras.layers.Dropout(0.3)(x)
x = tf.keras.layers.Conv2D(filters=32, kernel_size=2, padding='same', activation='relu')(x)
x = tf.keras.layers.MaxPooling2D(pool_size=2)(x)
x = tf.keras.layers.Dropout(0.3)(x)
x = tf.keras.layers.Flatten()(x)
x = tf.keras.layers.Dense(256, activation=None)(x) # No activation on final dense layer
#x = tf.keras.layers.Lambda(lambda y: tf.math.l2_normalize(x, axis=1))(x)
model = tf.keras.Model(inp,x)
return model
def get_siamese_model(input_shape):
"""
Model architecture
"""
# Define the tensors for the triplet of input images
anchor_input = tf.keras.layers.Input(input_shape, name="anchor_input")
positive_input = tf.keras.layers.Input(input_shape, name="positive_input")
negative_input = tf.keras.layers.Input(input_shape, name="negative_input")
# Convolutional Neural Network (same from earlier)
embedding_model = create_model(input_shape)
# Generate the embedding outputs
encoded_anchor = embedding_model(anchor_input)
encoded_positive = embedding_model(positive_input)
encoded_negative = embedding_model(negative_input)
inputs = [anchor_input, positive_input, negative_input]
outputs = [encoded_anchor, encoded_positive, encoded_negative]
#x = tf.keras.layers.Lambda(lambda x: tf.math.l2_normalize(outputs, axis=1))(outputs)
# Connect the inputs with the outputs
siamese_triplet = tf.keras.Model(inputs=inputs,outputs=outputs)
# return the model
return embedding_model, siamese_triplet
emb_mod, model = get_siamese_model([28,28,1])
# Compile the model
model.compile(
optimizer=tf.keras.optimizers.Adam(0.001),
loss=tfa.losses.TripletSemiHardLoss())
# Train the network
#train_dataset = tf.convert_to_tensor(train_dataset)
history = model.fit(
train_data,
epochs=5)
I am not sure what exactly you are trying to do, but you also have to incorporate your labels into your training dataset when using the tfa.losses.TripletSemiHardLoss(). Here is a working example:
import io
import numpy as np
import tensorflow as tf
import tensorflow_addons as tfa
from tensorflow.keras.datasets import fashion_mnist
# Dummy data to pass to the model
(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()
train_data = tf.data.Dataset.zip((tf.data.Dataset.from_tensor_slices(x_train[:20000]),
tf.data.Dataset.from_tensor_slices(x_train[20000:40000]),
tf.data.Dataset.from_tensor_slices(x_train[40000:])))
train_labels = tf.data.Dataset.zip((tf.data.Dataset.from_tensor_slices(y_train[:20000]),
tf.data.Dataset.from_tensor_slices(y_train[20000:40000]),
tf.data.Dataset.from_tensor_slices(y_train[40000:])))
dataset = tf.data.Dataset.zip((train_data, train_labels)).batch(32)
def create_model(input_shape):
inp = tf.keras.layers.Input(shape=input_shape)
x = tf.keras.layers.Conv2D(filters=64, kernel_size=2, padding='same', activation='relu', input_shape=(28,28,1))(inp)
x = tf.keras.layers.MaxPooling2D(pool_size=2)(x)
x = tf.keras.layers.Dropout(0.3)(x)
x = tf.keras.layers.Conv2D(filters=32, kernel_size=2, padding='same', activation='relu')(x)
x = tf.keras.layers.MaxPooling2D(pool_size=2)(x)
x = tf.keras.layers.Dropout(0.3)(x)
x = tf.keras.layers.Flatten()(x)
x = tf.keras.layers.Dense(256, activation=None)(x) # No activation on final dense layer
#x = tf.keras.layers.Lambda(lambda y: tf.math.l2_normalize(x, axis=1))(x)
model = tf.keras.Model(inp,x)
return model
def get_siamese_model(input_shape):
"""
Model architecture
"""
# Define the tensors for the triplet of input images
anchor_input = tf.keras.layers.Input(input_shape, name="anchor_input")
positive_input = tf.keras.layers.Input(input_shape, name="positive_input")
negative_input = tf.keras.layers.Input(input_shape, name="negative_input")
# Convolutional Neural Network (same from earlier)
embedding_model = create_model(input_shape)
# Generate the embedding outputs
encoded_anchor = embedding_model(anchor_input)
encoded_positive = embedding_model(positive_input)
encoded_negative = embedding_model(negative_input)
inputs = [anchor_input, positive_input, negative_input]
outputs = [encoded_anchor, encoded_positive, encoded_negative]
#x = tf.keras.layers.Lambda(lambda x: tf.math.l2_normalize(outputs, axis=1))(outputs)
# Connect the inputs with the outputs
siamese_triplet = tf.keras.Model(inputs=inputs,outputs=outputs)
# return the model
return embedding_model, siamese_triplet
emb_mod, model = get_siamese_model([28,28,1])
# Compile the model
model.compile(
optimizer=tf.keras.optimizers.Adam(0.001),
loss=tfa.losses.TripletSemiHardLoss())
# Train the network
history = model.fit(
dataset,
epochs=1)
625/625 [==============================] - 76s 120ms/step - loss: 0.1354 - model_79_loss: 0.0572 - model_79_1_loss: 0.0453 - model_79_2_loss: 0.0330
I think I am setting up my batches wrong. If I run with the generated dataset it runs fine but with my own data I get an error.
If I take out the encoder (max pooling) and decoder (UpSampling2D) I don't get an error.
input size (304, 228, 1)
Generated: RUNS
import tensorflow as tf
from tensorflow.keras import layers
from natsort import natsorted
from tensorflow.keras.models import Model
BATCH_SIZE = 4
EPOCHS = 20
LEARNING_RATE = 1e-4
RESET_TRAINING = True
INPUT_CHANNELS = 1
OUTPUT_CHANNELS = 1
LOSS_TYPE = tf.keras.losses.SparseCategoricalCrossentropy()
img_size = (304, 228)
# configure cuda
physical_devices = tf.config.experimental.list_physical_devices('GPU')
assert len(physical_devices) > 0, "Not enough GPU hardware devices available"
config = tf.config.experimental.set_memory_growth(physical_devices[0], True)
class UnetModel(Model):
def __init__(self, *args, **kwargs):
super().__init__(UnetModel, *args, **kwargs)
# -- Encoder -- #
# Block encoder 1
input_shape = (img_size[0], img_size[1], 1)
# If you want to know more about why we are using `he_normal`:
# https://stats.stackexchange.com/questions/319323/whats-the-difference-between-variance-scaling-initializer-and-xavier-initialize/319849#319849
# Or the excellent fastai course:
# https://github.com/fastai/course-v3/blob/master/nbs/dl2/02b_initializing.ipynb
initializer = 'he_normal'
inputs = layers.Input(shape=input_shape)
print("input shape ", input_shape)
conv_enc_1 = layers.Conv2D(64, 3, activation='relu', padding='same', kernel_initializer=initializer)(inputs)
conv_enc_1 = layers.Conv2D(64, 3, activation = 'relu', padding='same', kernel_initializer=initializer)(conv_enc_1)
# Block encoder 2
max_pool_enc_2 = layers.MaxPooling2D(pool_size=(2, 2))(conv_enc_1)
conv_enc_2 = layers.Conv2D(128, 5, activation = 'relu', padding = 'same', kernel_initializer = initializer)(max_pool_enc_2)
conv_enc_2 = layers.Conv2D(128, 5, activation = 'relu', padding = 'same', kernel_initializer = initializer)(conv_enc_2)
# Block decoder 1
up_dec_4 = layers.Conv2D(64, 2, activation = 'relu', padding = 'same', kernel_initializer = initializer)(layers.UpSampling2D(size = (2,2))(conv_enc_2))
merge_dec_4 = layers.concatenate([conv_enc_1, up_dec_4], axis = 3)
conv_dec_4 = layers.Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = initializer)(merge_dec_4)
conv_dec_4 = layers.Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = initializer)(conv_dec_4)
conv_dec_4 = layers.Conv2D(2, 3, activation = 'relu', padding = 'same', kernel_initializer = initializer)(conv_dec_4)
# -- Dencoder -- #
output = layers.Conv2D(1, 1, activation = 'softmax')(conv_dec_4)
self.model = tf.keras.Model(inputs = inputs, outputs = output)
def call(self, x):
return self.model(x)
model = UnetModel()
model.compile(optimizer=tf.keras.optimizers.Adam(LEARNING_RATE), loss = LOSS_TYPE, metrics= [tf.keras.metrics.get('accuracy')])
dataset_debug = tf.data.Dataset.from_tensor_slices((tf.random.normal(shape = (BATCH_SIZE, img_size[0], img_size[1], 1)), tf.random.normal(shape = (BATCH_SIZE, img_size[0], img_size[1], 1)))).batch(BATCH_SIZE)
history = model.fit(dataset_debug, epochs=EPOCHS, shuffle=True)
Does NOT run
Here I am splitting the filenames into training and validation sets using train_test_split and reading in images in the parse_img_input function
# takes image filenames of uint8 and normalizes to 0-1 range
def parse_img_input(img_file, img_file_out):
print("img file ", img_file)
def _parse_input(img_file, img_file_out):
# get img image
d_filepath = img_file.numpy().decode()
d_image_decoded = tf.image.decode_jpeg(
tf.io.read_file(d_filepath), channels=1)
d_image = tf.cast(d_image_decoded, tf.float32) / 255.0
# get img image
d_filepath_out = img_file_out.numpy().decode()
d_image_decoded_out = tf.image.decode_jpeg(
tf.io.read_file(d_filepath_out), channels=1)
d_image_out = tf.cast(d_image_decoded_out, tf.float32) / 255.0
# add channel dimension
d_image = tf.expand_dims(d_image, -1)
d_image_out = tf.expand_dims(d_image_out, -1)
return d_image, d_image_out
return tf.py_function(_parse_input,
inp=[img_file, img_file_out],
Tout=[tf.float32, tf.float32])
# depth_files_in, depth_files_out are lists of filenames
# split input data into train, test sets
X_train_file, X_test_file, y_train_file, y_test_file = train_test_split(depth_files_in, depth_files_out,
test_size=0.2,
random_state=0)
dataset_train = tf.data.Dataset.from_tensor_slices((X_train_file, y_train_file))
dataset_train = dataset_train.map(parse_img_input)
dataset_test = tf.data.Dataset.from_tensor_slices((X_test_file, y_test_file))
dataset_test = dataset_test.map(parse_img_input)
history = model.fit(dataset_train, epochs=EPOCHS, shuffle=True, batch_size = BATCH_SIZE, validation_data= dataset_test)
F tensorflow/stream_executor/cuda/cuda_dnn.cc:535] Check failed: cudnnSetTensorNdDescriptor(handle_.get(), elem_type, nd, dims.data(), strides.data()) == CUDNN_STATUS_SUCCESS (3 vs. 0)batch_descriptor: {count: 228 feature_map_count: 64 spatial: 152 0 value_min: 0.000000 value_max: 0.000000 layout: BatchDepthYX}
I have a problem with my code. I will be very happy if you can help.
The purpose is having mean absolute errors and root mean square errors with different epochs and batch sizes. I'm very new in deep learning so I have tried to do that like this. However, i am very confused.
How can I fix or rewrite this code. Thank you so much.
# Reading the file
df = pd.read_csv('data.csv')
df = df[df.columns.difference(['Unnamed: 0'])]
input_data = df.iloc[:,:100].values
label_MOS = df['MOS'].values
train_X, val_X, train_y, val_y = train_test_split(input_data,
label_MOS, test_size = 0.25, random_state = 14)
x_train = train_X
y_train = train_y
x_test = val_X
y_test = val_y
def create_model():
model=Sequential()
model.add(Dense(32, input_dim=100, kernel_initializer='normal', activation='relu'))
model.add(Dense(32, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
adam=Adam(learning_rate=0.1)
model.compile(loss='mean_squared_error', optimizer='adam', metrics=['mae'])
return model
# Create the model
model = KerasClassifier(build_fn = create_model,verbose = 0)
# Define the grid search parameters
batch_size = [20]
epochs = [500,1000]
# Make a dictionary of the grid search parameters
param_grid = dict(batch_size = batch_size,epochs = epochs)
# Build and fit the GridSearchCV
grid = GridSearchCV(estimator = model,param_grid = param_grid,cv = KFold(),verbose = )
grid_result = grid.fit(x_train,y_train)
NNpredictions = model.predict(x_test)
MAE = mean_absolute_error(val_y , NNpredictions)
RMSE = mean_squared_error(val_y , NNpredictions, squared = False)
# Summarize the results
print(' MAE {}, RMSE {}'.format(MAE.best_score_,RMSE.best_params_))
mae = MAE.cv_results_['mae']
rmse = RMSE.cv_results_['rmse']
# params = grid_result.cv_results_['params']
for mean, stdev in zip(mae, rmse):
print("mae %f rmse (%f) " % (mean, stdev))
I would do something like this:
batch_size = [20]
epochs = [500,1000]
result_list = list()
for batch_value in batch_size:
for epoch_value in epochs:
model = create_model()
model.fit(x=x_train,y=y_train,epochs=epoch_value, batch_size=batch_value)
metrics = model.evaluate(x=x_test,y=y_test)
ord_dic = collections.OrderedDict()
ord_dic['batch_size'] = batch_value
ord_dic['epochs'] = epoch_value
ord_dic['metrics'] = metrics
result_list.append(ord_dic)
print(result_list)
I have put the results in a list of Ordered Dictionaries, but you can easily change that part
I updated your code
from keras import backend as K
def create_model(losses='mse'):
model=Sequential()
model.add(Dense(32, input_dim=100, kernel_initializer='normal', activation='relu'))
model.add(Dense(32, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
adam=Adam(learning_rate=0.1)
model.compile(optimizer=adam, loss=losses, metrics=['accuracy'])
return model
def root_mean_squared_error(y_true, y_pred):
return K.sqrt(K.mean(K.square(y_pred - y_true)))
batch_size = [20]
epochs = [500,1000]
losses = ['mse', root_mean_squared_error]
neural_network = KerasClassifier(build_fn=network, verbose = 1)
param_grid = dict(losses=losses, epochs=epochs, batch_size = batches)
grid = GridSearchCV(estimator=neural_network, param_grid=param_grid )
grid_result = grid.fit(X_train, y_train)
print(grid_result.best_params_)
The create_model function needs to have a losses parameter, it's where your grid will pass the parameter.
I have built model in tensorflow use CNNs with accuracy over 90%. It's really worked but I don't know how to use this model to detect object with bounding box which I have trained. My model include many class and once label asociated with name of class. I'd read some way about ssd, it can do that but I don't really understand how it work. My CNNs below :
def cnn_model_fn(features,labels,mode):
#Input layer
input_layer = tf.reshape(features["x"],[-1,28,28,1])
#Convolutional layer 1
conv1 = tf.layers.conv2d(
inputs=input_layer,
filters=32,
kernel_size=[5,5],
padding="same",
activation=tf.nn.relu)
#Pooling Layer 1
pool1 = tf.layers.max_pooling2d(inputs=conv1,pool_size=[2,2],strides=2)
#Convolutional layer 2
conv2 = tf.layers.conv2d(
inputs=pool1,
filters=64,
kernel_size=[5,5],
padding="same",
activation=tf.nn.relu)
#Pooling layer 2
pool2 = tf.layers.max_pooling2d(inputs=conv2,pool_size=[2,2],strides=2)
#Debse layer
pool2_flat = tf.reshape(pool2,[-1,7*7*64])
dense = tf.layers.dense(inputs=pool2_flat,units=1024,activation=tf.nn.relu)
#Dropout
dropout = tf.layers.dropout(inputs=dense,rate=0.4,training=mode == tf.estimator.ModeKeys.TRAIN)
#Logits layer
logits = tf.layers.dense(inputs=dropout,units=10)
predictions = {
"classes":tf.argmax(input=logits,axis=1),
"probabilities":tf.nn.softmax(logits,name="softmax_tensor")
}
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode=mode,predictions=predictions)
#Calculate Loss
onehot_labels = tf.one_hot(indices=tf.cast(labels,tf.int32),depth=10)
loss = tf.losses.softmax_cross_entropy(onehot_labels=onehot_labels,logits=logits)
if mode == tf.estimator.ModeKeys.TRAIN:
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001)
train_op = optimizer.minimize(
loss=loss,
global_step=tf.train.get_global_step())
return tf.estimator.EstimatorSpec(mode=mode,loss=loss,train_op=train_op)
eval_metric_ops = {
"accuracy":tf.metrics.accuracy(labels=labels,predictions=predictions["classes"])
}
return tf.estimator.EstimatorSpec(mode=mode,loss=loss,eval_metric_ops=eval_metric_ops)
And I run my app with main:
def main(unused_argv):
# Load training and eval data
train_data_dir = "W:/Projects/AutoDrive/Training"
test_data_dir = "W:/Projects/AutoDrive/Testing"
images,labels = load_data(train_data_dir)
test_images,test_labels = load_data(test_data_dir)
print("Labels: {0} \nImages: {1}".format(len(set(labels)),len(images)))
for image in images[:5]:
print("shape: {0}, min: {1}, max: {2}".format(image.shape, image.min(), image.max()))
images = [skimage.transform.resize(image,(28,28,1)) for image in images]
for image in images[:5]:
print("shape: {0}, min: {1}, max: {2}".format(image.shape, image.min(), image.max()))
images = np.asarray(images,dtype=np.float32)
labels = np.asarray(labels,dtype=np.int32)
# Create the Estimator
TSRecognition_classifier = tf.estimator.Estimator(
model_fn=cnn_model_fn, model_dir="/tmp/TSRecognition_convnet_model")
# Set up logging for predictions
# Log the values in the "Softmax" tensor with label "probabilities"
tensors_to_log = {"probabilities": "softmax_tensor"}
logging_hook = tf.train.LoggingTensorHook(
tensors=tensors_to_log, every_n_iter=50)
# Train the model
train_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x": images},
y=labels,
batch_size=100,
num_epochs=None,
shuffle=True)
TSRecognition_classifier.train(
input_fn=train_input_fn,
steps=20000,
hooks=[logging_hook])
# Evaluate the model and print results
eval_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x": test_images},
y=test_labels,
num_epochs=1,
shuffle=False)
eval_results = TSRecognition_classifier.evaluate(input_fn=eval_input_fn)
print(eval_results)
And this is full code if you want to see:
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow as tf
import os
import skimage.data
import skimage.transform
import matplotlib
import matplotlib.pyplot as plt
tf.logging.set_verbosity(tf.logging.INFO)
def load_data(data_dir):
"""Load Data and return two lists"""
directories = [d for d in os.listdir(data_dir) if os.path.isdir(os.path.join(data_dir,d))]
list_labels = []
list_images = []
for d in directories:
label_dir = os.path.join(data_dir,d)
file_names = [os.path.join(label_dir,f) for f in os.listdir(label_dir) if f.endswith(".ppm")]
for f in file_names:
list_images.append(skimage.data.imread(f))
list_labels.append(int(d))
return list_images,list_labels
def display_images_and_labels(images,labels):
unique_labels = set(labels)
plt.figure(figsize=(15,15))
i = 1
for label in unique_labels:
image = images[labels.index(label)]
plt.subplot(8,8,i)
plt.axis('off')
plt.title("Label {0} ({1})".format(label,labels.count(label)))
i += 1
_ = plt.imshow(image)
plt.show()
def cnn_model_fn(features,labels,mode):
#Input layer
input_layer = tf.reshape(features["x"],[-1,28,28,1])
#Convolutional layer 1
conv1 = tf.layers.conv2d(
inputs=input_layer,
filters=32,
kernel_size=[5,5],
padding="same",
activation=tf.nn.relu)
#Pooling Layer 1
pool1 = tf.layers.max_pooling2d(inputs=conv1,pool_size=[2,2],strides=2)
#Convolutional layer 2
conv2 = tf.layers.conv2d(
inputs=pool1,
filters=64,
kernel_size=[5,5],
padding="same",
activation=tf.nn.relu)
#Pooling layer 2
pool2 = tf.layers.max_pooling2d(inputs=conv2,pool_size=[2,2],strides=2)
#Debse layer
pool2_flat = tf.reshape(pool2,[-1,7*7*64])
dense = tf.layers.dense(inputs=pool2_flat,units=1024,activation=tf.nn.relu)
#Dropout
dropout = tf.layers.dropout(inputs=dense,rate=0.4,training=mode == tf.estimator.ModeKeys.TRAIN)
#Logits layer
logits = tf.layers.dense(inputs=dropout,units=10)
predictions = {
"classes":tf.argmax(input=logits,axis=1),
"probabilities":tf.nn.softmax(logits,name="softmax_tensor")
}
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode=mode,predictions=predictions)
#Calculate Loss
onehot_labels = tf.one_hot(indices=tf.cast(labels,tf.int32),depth=10)
loss = tf.losses.softmax_cross_entropy(onehot_labels=onehot_labels,logits=logits)
if mode == tf.estimator.ModeKeys.TRAIN:
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001)
train_op = optimizer.minimize(
loss=loss,
global_step=tf.train.get_global_step())
return tf.estimator.EstimatorSpec(mode=mode,loss=loss,train_op=train_op)
eval_metric_ops = {"accuracy":tf.metrics.accuracy(labels=labels,predictions=predictions["classes"])
}
return tf.estimator.EstimatorSpec(mode=mode,loss=loss,eval_metric_ops=eval_metric_ops)
def main(unused_argv):
# Load training and eval data
train_data_dir = "W:/Projects/AutoDrive/Training"
test_data_dir = "W:/Projects/AutoDrive/Testing"
images,labels = load_data(train_data_dir)
test_images,test_labels = load_data(test_data_dir)
print("Labels: {0} \nImages: {1}".format(len(set(labels)),len(images)))
for image in images[:5]:
print("shape: {0}, min: {1}, max: {2}".format(image.shape, image.min(), image.max()))
images = [skimage.transform.resize(image,(28,28,1)) for image in images]
for image in images[:5]:
print("shape: {0}, min: {1}, max: {2}".format(image.shape, image.min(), image.max()))
images = np.asarray(images,dtype=np.float32)
labels = np.asarray(labels,dtype=np.int32)
# Create the Estimator
TSRecognition_classifier = tf.estimator.Estimator(
model_fn=cnn_model_fn, model_dir="/tmp/TSRecognition_convnet_model")
# Set up logging for predictions
# Log the values in the "Softmax" tensor with label "probabilities"
tensors_to_log = {"probabilities": "softmax_tensor"}
logging_hook = tf.train.LoggingTensorHook(
tensors=tensors_to_log, every_n_iter=50)
# Train the model
train_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x": images},
y=labels,
batch_size=100,
num_epochs=None,
shuffle=True)
TSRecognition_classifier.train(
input_fn=train_input_fn,
steps=20000,
hooks=[logging_hook])
# Evaluate the model and print results
eval_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x": test_images},
y=test_labels,
num_epochs=1,
shuffle=False)
eval_results = TSRecognition_classifier.evaluate(input_fn=eval_input_fn)
print(eval_results)
if __name__ == "__main__":
tf.app.run()
Addtionally, I've seen video which I think it can help me. But they just help me train single object. Any ideas can help me ?
There are some CNN that can output bounding boxes, and some CNN that only classify the input images. Yours is the second type. If you want bounding boxes with tensorflow, you can use the object detection API that allows you to build multi-class SSD and faster-rcnn : https://github.com/tensorflow/models/tree/master/research/object_detection