AuthenticationScheme & IAuthenticationHandler - asp.net-core

Hope everyone keeping safe,
I am trying to understand some of the abstractions in asp.net core authentication / authorization (and browsing the source code for additional insight).
There is an abstraction called "AuthenticationScheme" which seems to only bring in a ‘name’ property to the actual IAuthenticationHandler (which seems to be is the type that does the work).
I am trying to understand why asp.net has this the scheme abstraction, if the intent is just to give the handler a name, why not just include a name property in the handler's interface definition ?

To allow usage of the handler multiple times at least.
If you make an API that allows JWT Bearer tokens from two identity providers, then you might want to specify the JWT Bearer authentication handler twice.
And since each handler needs a unique name so we can invoke the right one, the developer must define those names.

Related

Multi-tenancy in Golang

I'm currently writing a service in Go where I need to deal with multiple tenants. I have settled on using the one database, shared-tables approach using a 'tenant_id' decriminator for tenant separation.
The service is structured like this:
gRPC server -> gRPC Handlers -
\_ Managers (SQL)
/
HTTP/JSON server -> Handlers -
Two servers, one gRPC (administration) and one HTTP/JSON (public API), each running in their own go-routine and with their own respective handlers that can make use of the functionality of the different managers. The managers (lets call one 'inventory-manager'), all lives in different root-level packages. These are as far as I understand it my domain entities.
In this regard I have some questions:
I cannot find any ORM for Go that supports multiple tenants out there. Is writing my own on top of perhaps the sqlx package a valid option?
Other services in the future will require multi-tenant support too, so I guess I would have to create some library/package anyway.
Today, I resolve the tenants by using a ResolveTenantBySubdomain middleware for the public API server. I then place the resolved tenant id in a context value that is sent with the call to the manager. Inside the different methods in the manager, I get the tenant id from the context value. This is then used with every SQL query/exec calls or returns a error if missing or invalid tenant id. Should I even use context for this purpose?
Resolving the tenant on the gRPC server, I believe I have to use the UnaryInterceptor function for middleware handling. Since the gRPC
API interface will only be accessed by other backend services, i guess resolving by subdomain is unneccessary here. But how should I embed the tenant id? In the header?
Really hope I'm asking the right questions.
Regards, Karl.
I cannot find any ORM for Go that supports multiple tenants out there. Is writing my own on top of perhaps the sqlx package a valid option?
ORMs in Go are a controversial topic! Some Go users love them, others hate them and prefer to write SQL manually. This is a matter of personal preference. Asking for specific library recommendations is off-topic here, and in any event, I don't know of any multi-tenant ORM libraries – but there's nothing to prevent you using a wrapper of sqlx (I work daily on a system which does exactly this).
Other services in the future will require multi-tenant support too, so I guess I would have to create some library/package anyway.
It would make sense to abstract this behavior from those internal services in a way which suits your programming and interface schemas, but there's no further details here to answer more concretely.
Today, I resolve the tenants by using a ResolveTenantBySubdomain middleware for the public API server. I then place the resolved tenant id in a context value that is sent with the call to the manager. Inside the different methods in the manager, I get the tenant id from the context value. This is then used with every SQL query/exec calls or returns a error if missing or invalid tenant id. Should I even use context for this purpose?
context.Context is mostly about cancellation, not request propagation. While your use is acceptable according to the documentation for the WithValue function, it's widely considered a bad code smell to use the context package as currently implemented to pass values. Rather than use implicit behavior, which lacks type safety and many other properties, why not be explicit in the function signature of your downstream data layers by passing the tenant ID to the relevant function calls?
Resolving the tenant on the gRPC server, I believe I have to use the UnaryInterceptor function for middleware handling. Since the gRPC API interface will only be accessed by other backend services, i guess resolving by subdomain is unneccessary here. But how should I embed the tenant id? In the header? [sic]
The gRPC library is not opinionated about your design choice. You can use a header value (to pass the tenant ID as an "ambient" parameter to the request) or explicitly add a tenant ID parameter to each remote method invocation which requires it.
Note that passing a tenant ID between your services in this way creates external trust between them – if service A makes a request of service B and annotates it with a tenant ID, you assume service A has performed the necessary access control checks to verify a user of that tenant is indeed making the request. There is nothing in this simple model to prevent a rogue service C asking service B for information about some arbitrary tenant ID. An alternative implementation would implement a more complex trust-nobody policy whereby each service is provided with sufficient access control information to make its own policy decision as to whether a particular request scoped to a particular tenant should be fulfilled.

Calling Web API action from within an actionfilter to take advantage of outputcache for repeated authorization

I wanted to take advantage of the OutputCache attribute for a authorization check to be made on an Action in a Controller. Based on a related thread and what I could tell the following design made sense, I was looking for feedback or corrections.
In other words:
1. a client calls an action on a controller which has my custom authorization filter attribute
2. The filter makes an HTTPClient call to another action on a web API controller (in the same site)
3. This action has an outputcache attribute to ensure I don't repeat an access check for the same parameters
Questions I had:
1. Is my use of OutputCache appropriate? I'm assuming a 5 minute cache lifetime.
2. In step#2 is a HttpClient call from my authorization filter the only way to make sure the pipeline for caching is built and used?
There are several related threads but I couldn't quite find one that tried to use this pattern for authorization.
FYI I did build out the solution I'd designed.
Answers for the questions I had:
Q1: OutputCache attribute on the authorization check call seems to work fine, I had to vary it using the cookie parameter, I'm a little concerned about this given cookies come from the client, but I still have the forms authorization filter higher and that should reject completely un-authenticated requests from coming in, would be happy to change to a better solution.
Q2: If i didn't make an HTTP call from my filter, the cache pipeline was not being built, so this is necessary as far as i can tell.

Accessing AdditionalContext of RequestSecurityToken from inside UserNameSecurityTokenHandler

I am creating a custom STS using a custom UserNameSecurityTokenHandler derived class. In the client, I am adding some additional information to the AdditionalContext property of the RequestSecurityToken that the Token Handler needs to fully authenticate (in addition to User Name & Password).
I assume that the RequestSecurityToken must be available to me somewhere in my Token Handler, but I cannot locate it. I've prowled through the code with Reflector, but that has not helped either.
How can I get at this information?
Thanks in advance.
David Mullin
It turns out that I was confusing two unrelated things. The UserNameSecurityTokenHandler class is for authenticating the UserName/Password Client Credentials, which then flows into the STS as the "Current Principal".
So, never mind.

WCF service consuming passively issued SAML token

What is the best way to pass an existing SAML token from a website already authenticated via a passive STS?
We have built an Identity Provider which is issuing passive claims to the website for authentication. We have this working. Now we would like to add some WCF services into the mix - calling them from the context of the already authenticated web application. Ideally we would just like to pass the SAML token on without doing anything to it (i.e. adding new claims / re-signing). All of the examples I have seen require the ActAs sts implementation - but is this really necessary? This seems a bit bloated for what we want to achieve.
I would have thought a simple implementation passing the bootstrap token into the channel - using the CreateChannelActingAs or CreateChannelWithIssuedToken mechanism (and setting ChannelFactory.Credentials.SupportInteractive = false) to call the WCF service with the correct binding (what would that be?) would have been enough.
We are using the Fabrikam example code as reference, but as I say, think the ActAs functionality here is overkill for what we are trying to achieve.
What you need in this case is to insert the contents of your token into each outgoing message. If you look at the WIF Identity Training Toolkit they have an IssuedTokenHeader class that will facilitate this (along with the ClaimsIdentitySessionManager). These classes were built for Silverlight but, it doesn't change the solution they offer.
Here is an excerpt from the ClaimsIdentitySessionManager class.
using (OperationContextScope scope = new OperationContextScope(contextChannel))
{
IssuedTokenHeader header = new IssuedTokenHeader(this.TokenCache.GetTokenFromCache(serviceAppliesTo));
OperationContext.Current.OutgoingMessageHeaders.Add(header);
asyncOperation();
}

MVVM on top of claims aware web services

I'm looking for some input for a challenge that I'm currently facing.
I have built a custom WIF STS which I use to identify users who want to call some WCF services that my system offers. The WCF services use a custom authorization manager that determines whether or not the caller has the required claims to invoke a given service.
Now, I'm building a WPF app. on top of those WCF services. I'm using the MVVM pattern, such that the View Model invokes the protected WCF services (which implement the Model). The challenge that I'm facing is that I do not know whether or not the current user can succesfully invoke the web service methods without actually invoking them. Basically, what I want to achieve is to enable/disable certain parts of the UI based on the ability to succesfully invoke a method.
The best solution that I have come up with thus far is to create a service, which based on the same business logic as the custom authorization policy manager will be able to determine whether or not a user can invoke a given method. Now, the method would have to passed to this service as a string, or actually two strings, ServiceAddress and Method (Action), and based on that input, the service would be able to determine if the current user has the required claims to access the method. Obviously, for this to work, this service would itself have to require a issued token from the same STS, and with the same claims, in order to do its job.
Have any of you done something similar in the past, or do you have any good ideas on how to do this?
Thanks in advance,
Klaus
This depends a bit on what claims you're requiring in your services.
If your services require the same set of claims, I would recommend making a service that does nothing but checks the claims, and call that in advance. This would let you "pre-authorize" the user, in turn enabling/disabling the appropriate portions of the UI. When it comes time to call your actual services, the user can just call them at will, and you've already checked that it's safe.
If the services all require different sets of claims, and there is no easy way to verify that they will work in advance, I would just let the user call them, and handle this via normal exception handling. This is going to make life a bit trickier, though, since you'll have to let the user try (and fail) then disable.
Otherwise, you can do something like what you suggested - put in some form of catalog you can query for a specific user. In addition to just passing a address/method, it might be nicer to allow you to just pass an address, and retrieve the entire set of allowed (or disallowed, whichever is smaller) methods. This way you could reduce the round trips just for authentication.
An approach that I have taken is a class that does the inspection of a ClaimSet to guard the methods behind the service. I use attributes to decorate the methods with type, resource and right property values. Then the inspection class has a Demand method that throws an exception if the caller's ClaimSet does not contain a Claim with those property values. So before any method code executes, the claim inspection demand is called first. If the method is still executing after the demand, then the caller is good. There is also a bool function in the inspection class to answer the same question (does the caller have the appropriate claims) without throwing an exception.
I then package the inspection class so that it is deployed with clients and, as long as the client can also get the caller's ClaimSet (which I provide via a GetClaimSet method on the service) then it has everything it needs to make the same evaluations that the domain model is doing. I then use the bool method of the claim inspection class in the CanExecute method of ICommand properties in my view models to enable/disable controls and basically keep the user from getting authorization exceptions by not letting them do things that they don't have the claims for.
As far as how the client knows what claims are required for what methods, I guess I leave that up to the client developer to just know. In general on my projects this isn't a big problem because the methods have been very classic crud. So if the method is to add an Apple, then the claim required is intuitively going to be Type = Apple, Right = Add.
Not sure if this helps your situation but it has worked pretty well on some projects I have done.