DeepLabV3, segmentation and classification/detection on coral - tensorflow

I am trying to use DeepLabV3 for image segmentation and object detection/classification on Coral.
I was able to sucessfully run the semantic_segmentation.py example using DeepLabV3 on the coral, but that only shows an image with an object segmented.
I see that it assigns labels to colors - how do i associate the labels.txt file that I made based off of the label info of the model to these colors? (how do i know which color corresponds to which label).
When I try to run the
engine = DetectionEngine(args.model)
using the deeplab model, I get the error
ValueError: Dectection model should have 4 output tensors!This model
has 1.
I guess this way is the wrong approach?
Thanks!

I believe you have reached out to us regarding the same query. I just wanted to paste the answer here for others to reference:
"The detection model usually have 4 output tensors to specifies the locations, classes, scores, and number and detections. You can read more about it here. In contrary, the segmentation model only have a single output tensor, so if you treat it the same way, you'll most likely segfault trying to access the wrong memory region. If you want to do all three tasks on the same image, my suggestion is to create 3 different engines and feed the image into each. The only problem with this is that each time you switch the model, there will likely be data transfer bottleneck for the model to get loaded onto the TPU. We have here an example on how you can run 2 models on a single TPU, you should be able to modify it to take 3 models."
On the last note, I just saw that you added:
how do i associate the labels.txt file that I made based off of the label info of the model to these colors
I just don't think this is something you can do for segmentation model but maybe I'm just confused on your query?
Take object detection model for example, there are 4 output tensors, the second tensor gives you an array of id associates with a certain class that you can map to a a label file. Segmentaion models only give the pixel surrounding an objects.
[EDIT]
Apology, looks like I'm the one confused on segmentation models.
Quote form my college :)
"You are interested to know the name of the label, you can find the corresponding integer to that label from result array in Semantic_segmentation.py. Where result is classification data of each pixel.
For example;
if you print result array in the with bird.jpg as input you would find few pixel's value as 3 which is corresponding 4th label in pascal_voc_segmentation_labels.txt (as indexing starts at 0 )."

Related

Background images in one class object detection

When training a single class object detector in Tensorflow, I am trying to pass instances of images where no signal object exists, such that the model doesn't learn that every image contains at least one instance of that class. E.g. if my signal were cats, id want to pass pictures of other animals/landscapes as background -this could also reduce false positives.
I can see that a class id is reserved in the object detection API (0) for background, but I am unsure how to code this into the TFrecords for my background images - class could be 0 but what would be the bounding box coords? Or do i need a simpler classifier on top of this model to detect if there is a signal in the image or not, prior to detecting position?
Later approach of simple classifier, makes sense. I don't think there is a way to do the first part. You can use check on confidence score as well apart from checking the object is present.
It is good practice to create a dataset with not objects of interest, for the same you need to use the same tools (like - label img) that you have used for adding the boxes, image with no BB wil have xml files with no details of BB but only details of the image. The script create tf record will create the tf record from the xml files, look at the below links for more inforamtion -
Create tf record example -
https://github.com/tensorflow/models/blob/master/research/object_detection/dataset_tools/create_pet_tf_record.py
Using your own dataset-
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/using_your_own_dataset.md

Tensorflow word2vec InvalidArgumentError: Assign requires shapes of both tensors to match

I am using this code to train a word2vec model. I am trying to train it incrementally, with using saver.restore(). I am using new data after restoring the model. Since vocabulary size for the old data and new data are not the same, I got an exception like this:
InvalidArgumentError (see above for traceback): Assign requires shapes of both tensors to match. lhs shape= [28908,200] rhs shape= [71291,200]
Here 71291 is vocabulary size for the old data and 28908 is for new data.
It gets the vocabulary words from the train_data file here, and constructs the network model using size of the vocabulary. I thought that if I could set vocabulary size the same for my old data and new data, I can solve this problem.
So, my question is: Can I do that in this code? As far as I understand, I cannot reach skipgram_word2vec() function.
Or, is there any other way of solving this issue in this code beside what I thought? If it is not possible using this code, I will try other ways for my purpose.
Any help is appreciated.
Having taken a look at the source of word2vec_optimized.py I'd say you will need to change the code there. It operates by opening a text file right up front as "training data". For your purposes, you have to change the build_graph method and allow it to get an option to set all that data ( words, counts, words_per_epoch, current_epoch, total_words_processed, examples, labels, opts.vocab_words, opts.vocab_counts, opts.words_per_epoch ) when initializing, and not from a text file.
Then you need to merge the two text files, and load them once, to produce the vocabulary. Then save all the data above, and use that to restore the network at each subsequent run.
If you use more than 2 texts, you need to include all the text you plan to use in the first data to produce the vocabulary, however.

TensorFlow Object Detection API: evaluation mAP behaves weirdly?

I am training an object detector for my own data using Tensorflow Object Detection API. I am following the (great) tutorial by Dat Tran https://towardsdatascience.com/how-to-train-your-own-object-detector-with-tensorflows-object-detector-api-bec72ecfe1d9. I am using the provided ssd_mobilenet_v1_coco-model pre-trained model checkpoint as the starting point for the training. I have only one object class.
I exported the trained model, ran it on the evaluation data and looked at the resulted bounding boxes. The trained model worked nicely; I would say that if there was 20 objects, typically there were 13 objects with spot on predicted bounding boxes ("true positives"); 7 where the objects were not detected ("false negatives"); 2 cases where problems occur were two or more objects are close to each other: the bounding boxes get drawn between the objects in some of these cases ("false positives"<-of course, calling these "false positives" etc. is inaccurate, but this is just for me to understand the concept of precision here). There are almost no other "false positives". This seems much better result than what I was hoping to get, and while this kind of visual inspection does not give the actual mAP (which is calculated based on overlap of the predicted and tagged bounding boxes?), I would roughly estimate the mAP as something like 13/(13+2) >80%.
However, when I run the evaluation (eval.py) (on two different evaluation sets), I get the following mAP graph (0.7 smoothed):
mAP during training
This would indicate a huge variation in mAP, and level of about 0.3 at the end of the training, which is way worse than what I would assume based on how well the boundary boxes are drawn when I use the exported output_inference_graph.pb on the evaluation set.
Here is the total loss graph for the training:
total loss during training
My training data consist of 200 images with about 20 labeled objects each (I labeled them using the labelImg app); the images are extracted from a video and the objects are small and kind of blurry. The original image size is 1200x900, so I reduced it to 600x450 for the training data. Evaluation data (which I used both as the evaluation data set for eval.pyand to visually check what the predictions look like) is similar, consists of 50 images with 20 object each, but is still in the original size (the training data is extracted from the first 30 min of the video and evaluation data from the last 30 min).
Question 1: Why is the mAP so low in evaluation when the model appears to work so well? Is it normal for the mAP graph fluctuate so much? I did not touch the default values for how many images the tensorboard uses to draw the graph (I read this question: Tensorflow object detection api validation data size and have some vague idea that there is some default value that can be changed?)
Question 2: Can this be related to different size of the training data and the evaluation data (1200x700 vs 600x450)? If so, should I resize the evaluation data, too? (I did not want to do this as my application uses the original image size, and I want to evaluate how well the model does on that data).
Question 3: Is it a problem to form the training and evaluation data from images where there are multiple tagged objects per image (i.e. surely the evaluation routine compares all the predicted bounding boxes in one image to all the tagged bounding boxes in one image, and not all the predicted boxes in one image to one tagged box which would preduce many "false false positives"?)
(Question 4: it seems to me the model training could have been stopped after around 10000 timesteps were the mAP kind of leveled out, is it now overtrained? it's kind of hard to tell when it fluctuates so much.)
I am a newbie with object detection so I very much appreciate any insight anyone can offer! :)
Question 1: This is the tough one... First, I think you don't understand correctly what mAP is, since your rough calculation is false. Here is, briefly, how it is computed:
For each class of object, using the overlap between the real objects and the detected ones, the detections are tagged as "True positive" or "False positive"; all the real objects with no "True positive" associated to them are labelled "False Negative".
Then, iterate through all your detections (on all images of the dataset) in decreasing order of confidence. Compute the accuracy (TP/(TP+FP)) and recall (TP/(TP+FN)), only counting the detections that you've already seen ( with confidence bigger than the current one) for TP and FP. This gives you a point (acc, recc), that you can put on a precision-recall graph.
Once you've added all possible points to your graph, you compute the area under the curve: this is the Average Precision for this category
if you have multiple categories, the mAP is the standard mean of all APs.
Applying that to your case: in the best case your true positive are the detections with the best confidence. In that case your acc/rec curve will look like a rectangle: you'd have 100% accuracy up to (13/20) recall, and then points with 13/20 recall and <100% accuracy; this gives you mAP=AP(category 1)=13/20=0.65. And this is the best case, you can expect less in practice due to false positives which higher confidence.
Other reasons why yours could be lower:
maybe among the bounding boxes that appear to be good, some are still rejected in the calculations because the overlap between the detection and the real object is not quite big enough. The criterion is that Intersection over Union (IoU) of the two bounding boxes (real one and detection) should be over 0.5. While it seems like a gentle threshold, it's not really; you should probably try and write a script to display the detected bounding boxes with a different color depending on whether they're accepted or not (if not, you'll get both a FP and a FN).
maybe you're only visualizing the first 10 images of the evaluation. If so, change that, for 2 reasons: 1. maybe you're just very lucky on these images, and they're not representative of what follows, just by luck. 2. Actually, more than luck, if these images are the first from the evaluation set, they come right after the end of the training set in your video, so they are probably quite similar to some images in the training set, so they are easier to predict, so they're not representative of your evaluation set.
Question 2: if you have not changed that part in the config file mobilenet_v1_coco-model, all your images (both for training and testing) are rescaled to 300x300 pixels at the start of the network, so your preprocessings don't matter.
Question 3: no it's not a problem at all, all these algorithms were designed to detect multiple objects in images.
Question 4: Given the fluctuations, I'd actually keep training it until you can see improvement or clear overtraining. 10k steps is actually quite small, maybe it's enough because your task is relatively easy, maybe it's not enough and you need to wait ten times that to have significant improvement...

How to refine the Graphcut cmex code based on a specific energy functions?

I download the following graph-cut code:
https://github.com/shaibagon/GCMex
I compiled the mex files, and ran it for pre-defined image in the code (which is rgb image)
I wanna optimize the image segmentation results,
I have probability map of the image, which its dimension is (width,height, 5). Five probability distribution over the image dimension are stacked together. each relates to one the classes.
My problem is which parts of code should according to the probability image.
I want to define Data and Smoothing terms based on my application.
My question is:
1) Has someone refined the code according to the defining different energy function (I wanna change Unary and pair-wise formulation).
2) I have a stack of 3D images. I wanna define 6-neighborhood system, 4 neighbors in current slice and the other two from two adjacent slices. In which function and part of code can I do the refinements?
Thanks

How to count objects detected in an image using Tensorflow?

I have trained my custom object detector using faster_rcnn_inception_v2, tested it using object_detection_tutorial.ipynb and it works perfect, I can find bounding boxes for the objects inside the test image, my problem is how can I actually count the number of those bounding boxes or simply I want to count the number of objects detected for each class.
Because of low reputations I can not comment.
As far as I know the object detection API unfortunately has no built-in function for this.
You have to write this function by yourself. I assume you run the eval.py for evaluation!? To access the individual detected objects for each image you have to follow the following chain of scripts:
eval.py -> evaluator.py ->object_detection_evaluation.py -> per_image_evaluation.py
In the last script you can count the detected objects and bounding boxes per image. You just have to save the numbers and sum them up over your entire dataset.
Does this already help you?
I solved this using Tensorflow Object Counting API. We have an example of counting objects in an image using single_image_object_counting.py. I just replaced ssd_mobilenet_v1_coco_2017_11_17 with my own model containing inference graph
input_video = "image.jpg"
detection_graph, category_index = backbone.set_model(MODEL_DIR)