I have a dataframe containing astronomical data:
I'm using statsmodels.formula.api to try to apply a polynomial fit to an dataframe, using columns labelled log_z and U, B, V, and other variables. I've got so far
sources['log_z'] = np.log10(sources.z)
mask = ~np.isnan((B-I)) & ~np.isnan(log_z)
model = ols(formula='(B-I) + np.power((U-R),2) ~ log_z', data = [log_z[mask], (B-I)[mask]]).fit()
but I keep getting
PatsyError: Error evaluating factor: TypeError: list indices must be integers or slices, not str
(B-I) + np.power((U-R),2) ~ log_z
^^^^^^^^^^^^^^^^^
even though I'm passing arrays into the function. I get the same error message (apart from the last line) no matter what arrays I use, or how I format them. Can anyone see what I'm doing wrong?
I have a Data Frame which looks like this:
I am trying to vectorize every row, but only from the text column. I wrote this code:
vectorizerCount = CountVectorizer(stop_words='english')
# tokenize and build vocab
allDataVectorized = allData.apply(vectorizerCount.fit_transform(allData.iloc[:]['headline_text']), axis=1)
The error says:
TypeError: ("'csr_matrix' object is not callable", 'occurred at index 0')
Doing some research and trying changes I found out the fit_transform function returns a scipy.sparse.csr.csr_matrix and that is not callable.
Is there another way to do this?
Thanks!
There are a number of problems with your code. You probably need something like
allDataVectorized = pd.DataFrame(vectorizerCount.fit_transform(allData[['headline_text']]))
allData[['headline_text']]) (with the double brackets) is a DataFrame, which transforms to a numpy 2d array.
fit_transform returns a csr matrix.
pd.DataFrame(...) creates a DataFrame from a csr matrix.
I'm trying to make a grid in ggplot to plot 4 graphs, as if it were a basic pair (mfrow = c (2,2)). However, I can not execute the code. I have already tried with gridExtra and cowplot with the functions plot_grid, grid.arrange, ggplot2.multiplot and also tried with the multiplot function. The error that appears is as follows:
Error: Aesthetics must be either length 1 or the same as the data (8598): alpha, x, y, group
gridExtra::grid.arrange(ggplot(),ggplot(),ggplot(),ggplot(), nrow=2)
produces
you may want to debug your code for each individual plot first.
I'm having trouble solving a discrepancy between something breaking at runtime, but using the exact same data and operations in the python console, having it work fine.
# f_err - currently has value 1.11819388872025
# l_scales - currently a numpy array [1.17840183376334 1.13456764589809]
sq_euc_dists = self.se_term(x1, x2, l_scales) # this is fine. It calls cdists on x1/l_scales, x2/l_scales vectors
return (f_err**2) * np.exp(-0.5 * sq_euc_dists) # <-- errors on this line
The error that I get is
AttributeError: 'Zero' object has no attribute 'exp'
However, calling those exact same lines, with the same f_err, l_scales, and x1, x2 in the console right after it errors out, somehow does not produce errors.
I was not able to find a post referring to the 'Zero' object error specifically, and the non-'Zero' ones I found didn't seem to apply to my case here.
EDIT: It was a bit lacking in info, so here's an actual (extracted) runnable example with sample data I took straight out of a failed run, which when run in isolation works fine/I can't reproduce the error except in runtime.
Note that the sqeucld_dist function below is quite bad and I should be using scipy's cdist instead. However, because I'm using sympy's symbols for matrix elementwise gradients with over 15 partial derivatives in my real data, cdist is not an option as it doesn't deal with arbitrary objects.
import numpy as np
def se_term(x1, x2, l):
return sqeucl_dist(x1/l, x2/l)
def sqeucl_dist(x, xs):
return np.sum([(i-j)**2 for i in x for j in xs], axis=1).reshape(x.shape[0], xs.shape[0])
x = np.array([[-0.29932052, 0.40997373], [0.40203481, 2.19895326], [-0.37679417, -1.11028267], [-2.53012051, 1.09819485], [0.59390005, 0.9735], [0.78276777, -1.18787904], [-0.9300892, 1.18802775], [0.44852545, -1.57954101], [1.33285028, -0.58594779], [0.7401607, 2.69842268], [-2.04258086, 0.43581565], [0.17353396, -1.34430191], [0.97214259, -1.29342284], [-0.11103534, -0.15112815], [0.41541759, -1.51803154], [-0.59852383, 0.78442389], [2.01323359, -0.85283772], [-0.14074266, -0.63457529], [-0.49504797, -1.06690869], [-0.18028754, -0.70835799], [-1.3794126, 0.20592016], [-0.49685373, -1.46109525], [-1.41276934, -0.66472598], [-1.44173868, 0.42678815], [0.64623684, 1.19927771], [-0.5945761, -0.10417961]])
f_err = 1.11466725760716
l = [1.18388412685279, 1.02290811104357]
result = (f_err**2) * np.exp(-0.5 * se_term(x, x, l)) # This runs fine, but fails with the exact same calls and data during runtime
Any help greatly appreciated!
Here is how to reproduce the error you are seeing:
import sympy
import numpy
zero = sympy.sympify('0')
numpy.exp(zero)
You will see the same exception you are seeing.
You can fix this (inefficiently) by changing your code to the following to make things floating point.
def sqeucl_dist(x, xs):
return np.sum([np.vectorize(float)(i-j)**2 for i in x for j in xs],
axis=1).reshape(x.shape[0], xs.shape[0])
It will be better to fix your gradient function using lambdify.
Here's an example of how lambdify can be used on partial d
from sympy.abc import x, y, z
expression = x**2 + sympy.sin(y) + z
derivatives = [expression.diff(var, 1) for var in [x, y, z]]
derivatives is now [2*x, cos(y), 1], a list of Sympy expressions. To create a function which will evaluate this numerically at a particular set of values, we use lambdify as follows (passing 'numpy' as an argument like that means to use numpy.cos rather than sympy.cos):
derivative_calc = sympy.lambdify((x, y, z), derivatives, 'numpy')
Now derivative_calc(1, 2, 3) will return [2, -0.41614683654714241, 1]. These are ints and numpy.float64s.
A side note: np.exp(M) will calculate the element-wise exponent of each of the elements of M. If you are trying to do a matrix exponential, you need np.linalg.exmp.
I have a pandas dataframe and passing df[list_of_columns] as X and df[[single_column]] as Y to a Random Forest regressor.
What does the following warnning mean and what should be done to resolve it?
DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel(). probas = cfr.fit(trainset_X, trainset_Y).predict(testset_X)
Simply check the shape of your Y variable, it should be a one-dimensional object, and you are probably passing something with more (possibly trivial) dimensions. Reshape it to the form of list/1d array.
You can use df.single_column.values or df['single_column'].values to get the underlying numpy array of your series (which, in this case, should also have the correct 1D-shape as mentioned by lejlot).
Actually the warning tells you exactly what is the problem:
You pass a 2d array which happened to be in the form (X, 1), but the method expects a 1d array and has to be in the form (X, ).
Moreover the warning tells you what to do to transform to the form you need: y.values.ravel().
Use Y = df[[single_column]].values.ravel() solves DataConversionWarning for me.