I want to use hidden markov model for data prediction - tensorflow

I am new to machine learning models and data science libraries. I wanted to use the Hidden Markov model for statistical data prediction on the fly which read the data from kafka and builds the model which is used to predict the data during the run-time and do the same for continous stream always.
Currently i can see only Tensorflow hidden markov model implementation in tensorflow python (tensorflow_probability distribution). Is their any other library available which can help me acheive the above scenario
Suggestions can involve the libraries of JAVA and python
Please feel free to add any resource links that can help me to understand the usage of tensorflow for hidden markov model

this might be a nice place to start: https://hmmlearn.readthedocs.io/en/latest/tutorial.html

Other alternatives, I found, are
Java:
Mallet library and it's extention GRMM in particular.
Python:
Pommegranate with it's HMM support.
Having said that, TensorFlow is much better known active and supported library, in my impression. I'd try that first.
I'm searching a library that would support Hierarchical HMMs (HHMM). That would probably require some tweaking into one of the listed ones.

Related

How to use a custom model with Tensorflow Hub?

My goal is to test out Google's BERT algorithm in Google Colab.
I'd like to use a pre-trained custom model for Finnish (https://github.com/TurkuNLP/FinBERT). The model can not be found on TFHub library. I have not found a way to load model with Tensorflow Hub.
Is there a neat way to load and use a custom model with Tensorflow Hub?
Fundamentally: yes. Everyone can create the kind of models that TF Hub hosts, and I hope authors of interesting models do consider that.
For TF1 and the hub.Module format tailored to it, see
https://www.tensorflow.org/hub/tf1_hub_module#creating_a_new_module
For TF2 and its revised SavedModel format, see
https://www.tensorflow.org/hub/tf2_saved_model#creating_savedmodels_for_tf_hub
That said, a sophisticated model like BERT requires a bit of attention to export it with all bells and whistles, so it helps to have some tooling to build on. The BERT reference implementation for TF2 at https://github.com/tensorflow/models/tree/master/official/nlp/bert comes with an open-sourced export_tfhub.py script, and anyone can use that to export custom BERT instances created from that code base.
However, I understand from https://github.com/TurkuNLP/FinBERT/blob/master/nlpl_tutorial/training_bert.md#general-info that you are using Nvidia's fork of the original TF1 implementation of BERT. There are Hub modules created from the original research code, but the tooling to that end has not been open-sourced, and Nvidia doesn't seem to have added their own either.
If that's not changing, you'll probably have to resort to doing things the pedestrian way and get acquainted with their codebase and load their checkpoints into it.

Tensorflow Stored Learning

I haven't tried Tensorflow yet but still curious, how does it store, and in what form, data type, file type, the acquired learning of a machine learning code for later use?
For example, Tensorflow was used to sort cucumbers in Japan. The computer used took a long time to learn from the example images given about what good cucumbers look like. In what form the learning was saved for future use?
Because I think it would be inefficient if the program should have to re-learn the images again everytime it needs to sort cucumbers.
Ultimately, a high level way to think about a machine learning model is three components - the code for the model, the data for that model, and metadata needed to make this model run.
In Tensorflow, the code for this model is written in Python, and is saved in what is known as a GraphDef. This uses a serialization format created at Google called Protobuf. Common serialization formats include Python's native Pickle for other libraries.
The main reason you write this code is to "learn" from some training data - which is ultimately a large set of matrices, full of numbers. These are the "weights" of the model - and this too is stored using ProtoBuf, although other formats like HDF5 exist.
Tensorflow also stores Metadata associated with this model - for instance, what should the input look like (eg: an image? some text?), and the output (eg: a class of image aka - cucumber1, or 2? with scores, or without?). This too is stored in Protobuf.
During prediction time, your code loads up the graph, the weights and the meta - and takes some input data to give out an output. More information here.
Are you talking about the symbolic math library, or the idea of tensor flow in general? Please be more specific here.
Here are some resources that discuss the library and tensor flow
These are some tutorials
And here is some background on the field
And this is the github page
If you want a more specific answer, please give more details as to what sort of work you are interested in.
Edit: So I'm presuming your question is more related to the general field of tensor flow than any particular application. Your question still is too vague for this website, but I'll try to point you toward a few resources you might find interesting.
The tensorflow used in image recognition often uses an ANN (Artificial Neural Network) as the object on which to act. What this means is that the tensorflow library helps in the number crunching for the neural network, which I'm sure you can read all about with a quick google search.
The point is that tensorflow isn't a form of machine learning itself, it more serves as a useful number crunching library, similar to something like numpy in python, in large scale deep learning simulations. You should read more here.

How to predict using Tensorflow?

This is a newbie question for the tensorflow experts:
I reading lot of data from power transformer connected to an array of solar panels using arduinos, my question is can I use tensorflow to predict the power generation in future.
I am completely new to tensorflow, if can point me to something similar I can start with that or any github repo which is doing similar predictive modeling.
Edit: Kyle pointed me to the MNIST data, which I believe is a Image Dataset. Again, not sure if tensorflow is the right computation library for this problem or does it only work on Image datasets?
thanks, Rajesh
Surely you can use tensorflow to solve your problem.
TensorFlowâ„¢ is an open source software library for numerical
computation using data flow graphs.
So it works not only on Image dataset but also others. Don't worry about this.
And about prediction, first you need to train a model(such as linear regression) on you dataset, then predict. The tutorial code can be found in tensorflow homepage .
Get your hand dirty, you will find it works on your dataset.
Good luck.
You can absolutely use TensorFlow to predict time series. There are plenty of examples out there, like this one. And this is a really interesting one on using RNN to predict basketball trajectories.
In general, TF is a very flexible platform for solving problems with machine learning. You can create any kind of network you can think of in it, and train that network to act as a model for your process. Depending on what kind of costs you define and how you train it, you can build a network to classify data into categories, predict a time series forward a number of steps, and other cool stuff.
There is, sadly, no short answer for how to do this, but that's just because the possibilities are endless! Have fun!

Compare deep learning framework between TensorFlow and PaddlePaddle

I want to study on the research of deep learning, but I don't know which framwork should I choice between TensorFlow and PaddlePaddle. who can make a contrast between the two frameworks? which one is better? especially in the running efficiency of CPU
It really depends what you are shooting for...
If you plan on training, CPU is not going to work well for you. Use colab or kaggle.
Assuming you do get a GPU, it depends if you want to focus on classification or object detection.
If you focus on classification, Keras is probably the easiest to work with or pytorch if you want some advanced stuff and to be able to change things.
If you plan on object detection, things are getting complicated... Inference is reasonably easy but training is complicated. There are actually 4 platforms you should consider:
Tensorflow - powerful but very difficult to work with. If you do not use Keras (and for OD you usually can't), you need to preprocess the dataset into tfrecords and it is a pain. The OD Api has very cryptic messages and it is very sensitive to the combination of tf version and api version. On the other hand, cool models like efficientdet are more or less easy to use.
MMdetection - very powerful framework, has lots of advanced models and once you understand how to work with it, you can easily work with and of the models it supports. Downside is that some models are slow to arrive (efficientdet, for example)
paddlepaddle - if you know Chinese, this should work ok, maybe. The documentation is a bit behind and usually requires lots of improvisation. Basically it is similar to mmdetection just with a few unique models and a few missing models.
detectron2 - I didn't work with this one, but it seems to support only a few models.
You probably need first to define for yourself what do you want to do and then choose.
Good luck!
It is not that trivial. Some models run faster with one kind of framework others with another. Furthermore, it depends on the hardware as well. See this blog. If inference is your only concern, then you can develop your model in any of the popular frameworks like TensorFlow, PyTorch, etc. In the end convert your model to ONNX format and benchmark its performance with DNN-Bench to choose the best inference engine for your application.

regarding caffe to tensorflow

Currently, there are a lot of deep learning models developed in Caffe instead of tensorflow. If I want to re-write these models in tensorflow, how to start? I am not familiar with Caffe structure. It seems to me that there are some files storing the model architecture only. My guess is that I only need to understand and transfer those architecture design into Tensorflow. The input/output/training will be re-written anyway. Is this thought meaningful?
I see some Caffe implementation also need to hack into the original Caffe framework down to the C++ level, and make some modifications. I am not sure under what kind of scenario the Caffe model developer need to go that deep? If I just want to re-implement their models in Tensorflow, do I need to go to check their C++ modifications, which are sometimes not documented at all.
I know there are some Caffe-Tensorflow transformation tool. But there are always some constraints, and I think re-write the model directly maybe more straightforward.
Any thougts, suggestions, and link to tutorials are highly appreciated.
I have already asked a similar question.
To synthetise the possible answers :
You can either use pre-existing tools like etheron's kaffe(which is really simple to use). But its simplicity comes at a cost: it is not easy to debug.
As #Yaroslav Bulatov answered start from scratch and try to make each layer match. In this regard I would advise you to look at ry's github which is a remarkable example where you basically have small helper functions which indicate how to reshape the weights appropriately from caffe to Tensorflow, which is the only real thing you have to do to make simple models match and also provides activations check layer by layer.