Suppose we have two tensors X,Y of shapes, say, (a,b) and (b,c) respectively. We can then construct a new tensor T of shape (a,b,c) defined by T[i][j][k] = X[i][j] + Y[j][k].
How can I implement this in TensorFlow? How about the analogue where I replace the addition with multiplication?
Thank you in advance.
Is this what you're looking for?
a = tf.constant([[2,3],[4,1]]) # A 2x2 matrix
b = tf.constant([[1,2,1],[3,4,2]]) # A 2x3 matrix
# Make a into 2x2x3 matrix
aa = tf.expand_dims(a,-1)
# Make b into 1x2x3 matrix
bb = tf.expand_dims(b, 0)
# Do element wise addition, resulting in 2x2x3 matrix.
c = aa + bb
Related
I have a (n,n,d,d) shaped tensor A.
How can I efficiently reshape it into an (ndim, ndim) block matrix B, such that A[i,j,k,l] = B[id+k, jd+l]? In other words, I want to tile the matrix B block by block in the last two dimensions of A.
You need to transpose the array first so that they are adjacent to each other.
You can then reshape to desired shape to get what you asked for
for example:
import numpy as np
n1 = n2 = 100
d1 = d2 = 4
A = np.random.rand(n1,n2,d1,d2)
B = A.transpose(0,2,1,3) ## transpose so that that they are adjacent (exactly what you wrote)
# B now has a shape (n1,d1,n2,d2)
C = B.reshape(n1*d1, n2*d2) ## your required array
Suppose we have two tensors:
tensor A whose shape is (d,m,n)
tensor B whose shape is (d,n,l).
If we want to get the pairwise matrix product of the right-most matrix of A and B, I think we can use np.einsum('dmn,...nl->d...ml',A,B) whose size is (d,d,m,l). However, I would like to get the pairwise product of not all the pairs.
Import a parameter k, 1<=k<=d, I want to get the following pairwise matrix product:
from
A(0,...)#B(0,...)
to
A(0,...)#B(k-1,...)
;
from
A(1,...)#B(1,...)
to
A(1,...)#B(k,...)
;
....
;
from
A(d-2,...)#B(d-2,...),
A(d-2,...)#B(d-1,...)
to
A(d-2,...)#B(k-3,...)
;
from
A(d-1,...)#B(d-1,...)
to
A(d-1,...)#B(k-2,...)
.
Note here we we use a rolling way to deal with tensor B. (like numpy.roll).
Finally, we actually get a tensor whose shape is (d,k,m,l).
What's the most efficient way to do this.
I know several ways like:
First get np.einsum('dmn,...nl->d...ml',A,B), then use a mask to extract the (d,k) pairs.
tile B first, then use einsum in some way.
But I think there exists a better way.
I doubt you can do much better than a for loop. Here is, for example, a vectorized version using einsum and stride_tricks compared to a double for loop:
Code:
from simple_benchmark import BenchmarkBuilder, MultiArgument
import numpy as np
from numpy.lib.stride_tricks import as_strided
B = BenchmarkBuilder()
#B.add_function()
def loopy(A,B,k):
d,m,n = A.shape
l = B.shape[-1]
out = np.empty((d,k,m,l),int)
for i in range(d):
for j in range(k):
out[i,j] = A[i]#B[(i+j)%d]
return out
#B.add_function()
def vectory(A,B,k):
d,m,n = A.shape
l = B.shape[-1]
BB = np.concatenate([B,B[:k-1]],0)
BB = as_strided(BB,(d,k,n,l),np.repeat(BB.strides,(2,1,1)))
return np.einsum("ikl,ijln->ijkn",A,BB)
#B.add_arguments('d x k x m x n x l')
def argument_provider():
for exp in range(10):
d,k,m,n,l = (np.r_[1.6,1.5,1.5,1.5,1.5]**exp*(4,2,2,2,2)).astype(int)
print(d,k,m,n,l)
A = np.random.randint(0,10,(d,m,n))
B = np.random.randint(0,10,(d,n,l))
yield k*d*m*n*l,MultiArgument([A,B,k])
r = B.run()
r.plot()
import pylab
pylab.savefig('diagwa.png')
I have a tensor [a, b, c, d, e, f, g, h, i] with dimension 9 X 1536. I need to create a new tensor which is like [(a,b), (a,c), (a,d), (a,e),(a,f),(a,g), (a,h), (a,i)] with dimension [8 x 2 x 1536]. How can I do it with tensorflow ?
I tried like this
x = tf.zeros((9x1536))
x_new = tf.stack([(x[0],x[1]),
(x[0], x[2]),
(x[0], x[3]),
(x[0], x[4]),
(x[0], x[5]),
(x[0], x[6]),
(x[0], x[7]),
(x[0], x[8])])
This seems to work but I would like to know if there is a better solution or approach which can be used instead of this
You can obtain the desired output with a combination of tf.concat, tf.tile and tf.expand_dims:
import tensorflow as tf
import numpy as np
_in = tf.constant(np.random.randint(0,10,(9,1536)))
tile_shape = [(_in.shape[0]-1).value] + [1]*len(_in.shape[1:].as_list())
_out = tf.concat([
tf.expand_dims(
tf.tile(
[_in[0]],
tile_shape
)
,
1),
tf.expand_dims(_in[1:], 1)
],
1
)
tf.tile repeats the first element of _in creating a tensor of length len(_in)-1 (I compute separately the shape of the tile because we want to tile only on the first dimension).
tf.expand_dims adds a dimension we can then concat on
Finally, tf.concat stitches together the two tensors giving the desired result.
EDIT: Rewrote to fit the OP's actual use-case with multidimensional tensors.
I am wondering if it possible to apply a mask before performing theano.tensor.nnet.softmax?
This is the behavior I am looking for:
>>>a = np.array([[1,2,3,4]])
>>>m = np.array([[1,0,1,0]]) # ignore index 1 and 3
>>>theano.tensor.nnet.softmax(a,m)
array([[ 0.11920292, 0. , 0.88079708, 0. ]])
Note that a and m are matrices, so I would like the softmax with work on an entire matrix and perform row-wise masked softmax.
Also the output should be the same shape as a, so the solution can not do advanced indexing e.g. theano.tensor.softmax(a[0,[0,2]])
def masked_softmax(a, m, axis):
e_a = T.exp(a)
masked_e = e_a * m
sum_masked_e = T.sum(masked_e, axis, keepdims=True)
return masked_e / sum_masked_e
theano.tensor.switch is one way to do this.
In the computational graph you can do the following:
a_mask = theano.tensor.switch(m, a, np.NINF)
sm = theano.tensor.softmax(a_mask)
hope it helps others.
I am looking for algorithm to solve the following problem :
I have two sets of vectors, and I want to find the matrix that best approximate the transformation from the input vectors to the output vectors.
vectors are 3x1, so matrix is 3x3.
This is the general problem. My particular problem is I have a set of RGB colors, and another set that contains the desired color. I am trying to find an RGB to RGB transformation that would give me colors closer to the desired ones.
There is correspondence between the input and output vectors, so computing an error function that should be minimized is the easy part. But how can I minimize this function ?
This is a classic linear algebra problem, the key phrase to search on is "multiple linear regression".
I've had to code some variation of this many times over the years. For example, code to calibrate a digitizer tablet or stylus touch-screen uses the same math.
Here's the math:
Let p be an input vector and q the corresponding output vector.
The transformation you want is a 3x3 matrix; call it A.
For a single input and output vector p and q, there is an error vector e
e = q - A x p
The square of the magnitude of the error is a scalar value:
eT x e = (q - A x p)T x (q - A x p)
(where the T operator is transpose).
What you really want to minimize is the sum of e values over the sets:
E = sum (e)
This minimum satisfies the matrix equation D = 0 where
D(i,j) = the partial derivative of E with respect to A(i,j)
Say you have N input and output vectors.
Your set of input 3-vectors is a 3xN matrix; call this matrix P.
The ith column of P is the ith input vector.
So is the set of output 3-vectors; call this matrix Q.
When you grind thru all of the algebra, the solution is
A = Q x PT x (P x PT) ^-1
(where ^-1 is the inverse operator -- sorry about no superscripts or subscripts)
Here's the algorithm:
Create the 3xN matrix P from the set of input vectors.
Create the 3xN matrix Q from the set of output vectors.
Matrix Multiply R = P x transpose (P)
Compute the inverseof R
Matrix Multiply A = Q x transpose(P) x inverse (R)
using the matrix multiplication and matrix inversion routines of your linear algebra library of choice.
However, a 3x3 affine transform matrix is capable of scaling and rotating the input vectors, but not doing any translation! This might not be general enough for your problem. It's usually a good idea to append a "1" on the end of each of the 3-vectors to make then a 4-vector, and look for the best 3x4 transform matrix that minimizes the error. This can't hurt; it can only lead to a better fit of the data.
You don't specify a language, but here's how I would approach the problem in Matlab.
v1 is a 3xn matrix, containing your input colors in vertical vectors
v2 is also a 3xn matrix containing your output colors
You want to solve the system
M*v1 = v2
M = v2*inv(v1)
However, v1 is not directly invertible, since it's not a square matrix. Matlab will solve this automatically with the mrdivide operation (M = v2/v1), where M is the best fit solution.
eg:
>> v1 = rand(3,10);
>> M = rand(3,3);
>> v2 = M * v1;
>> v2/v1 - M
ans =
1.0e-15 *
0.4510 0.4441 -0.5551
0.2220 0.1388 -0.3331
0.4441 0.2220 -0.4441
>> (v2 + randn(size(v2))*0.1)/v1 - M
ans =
0.0598 -0.1961 0.0931
-0.1684 0.0509 0.1465
-0.0931 -0.0009 0.0213
This gives a more language-agnostic solution on how to solve the problem.
Some linear algebra should be enough :
Write the average squared difference between inputs and outputs ( the sum of the squares of each difference between each input and output value ). I assume this as definition of "best approximate"
This is a quadratic function of your 9 unknown matrix coefficients.
To minimize it, derive it with respect to each of them.
You will get a linear system of 9 equations you have to solve to get the solution ( unique or a space variety depending on the input set )
When the difference function is not quadratic, you can do the same but you have to use an iterative method to solve the equation system.
This answer is better for beginners in my opinion:
Have the following scenario:
We don't know the matrix M, but we know the vector In and a corresponding output vector On. n can range from 3 and up.
If we had 3 input vectors and 3 output vectors (for 3x3 matrix), we could precisely compute the coefficients αr;c. This way we would have a fully specified system.
But we have more than 3 vectors and thus we have an overdetermined system of equations.
Let's write down these equations. Say that we have these vectors:
We know, that to get the vector On, we must perform matrix multiplication with vector In.In other words: M · I̅n = O̅n
If we expand this operation, we get (normal equations):
We do not know the alphas, but we know all the rest. In fact, there are 9 unknowns, but 12 equations. This is why the system is overdetermined. There are more equations than unknowns. We will approximate the unknowns using all the equations, and we will use the sum of squares to aggregate more equations into less unknowns.
So we will combine the above equations into a matrix form:
And with some least squares algebra magic (regression), we can solve for b̅:
This is what is happening behind that formula:
Transposing a matrix and multiplying it with its non-transposed part creates a square matrix, reduced to lower dimension ([12x9] · [9x12] = [9x9]).
Inverse of this result allows us to solve for b̅.
Multiplying vector y̅ with transposed x reduces the y̅ vector into lower [1x9] dimension. Then, by multiplying [9x9] inverse with [1x9] vector we solved the system for b̅.
Now, we take the [1x9] result vector and create a matrix from it. This is our approximated transformation matrix.
A python code:
import numpy as np
import numpy.linalg
INPUTS = [[5,6,2],[1,7,3],[2,6,5],[1,7,5]]
OUTPUTS = [[3,7,1],[3,7,1],[3,7,2],[3,7,2]]
def get_mat(inputs, outputs, entry_len):
n_of_vectors = inputs.__len__()
noe = n_of_vectors*entry_len# Number of equations
#We need to construct the input matrix.
#We need to linearize the matrix. SO we will flatten the matrix array such as [a11, a12, a21, a22]
#So for each row we combine the row's variables with each input vector.
X_mat = []
for in_n in range(0, n_of_vectors): #For each input vector
#populate all matrix flattened variables. for 2x2 matrix - 4 variables, for 3x3 - 9 variables and so on.
base = 0
for col_n in range(0, entry_len): #Each original unknown matrix's row must be matched to all entries in the input vector
row = [0 for i in range(0, entry_len ** 2)]
for entry in inputs[in_n]:
row[base] = entry
base+=1
X_mat.append(row)
Y_mat = [item for sublist in outputs for item in sublist]
X_np = np.array(X_mat)
Y_np = np.array([Y_mat]).T
solution = np.dot(np.dot(numpy.linalg.inv(np.dot(X_np.T,X_np)),X_np.T),Y_np)
var_mat = solution.reshape(entry_len, entry_len) #create square matrix
return var_mat
transf_mat = get_mat(INPUTS, OUTPUTS, 3) #3 means 3x3 matrix, and in/out vector size 3
print(transf_mat)
for i in range(0,INPUTS.__len__()):
o = np.dot(transf_mat, np.array([INPUTS[i]]).T)
print(f"{INPUTS[i]} x [M] = {o.T} ({OUTPUTS[i]})")
The output is as such:
[[ 0.13654096 0.35890767 0.09530002]
[ 0.31859558 0.83745124 0.22236671]
[ 0.08322497 -0.0526658 0.4417611 ]]
[5, 6, 2] x [M] = [[3.02675088 7.06241873 0.98365224]] ([3, 7, 1])
[1, 7, 3] x [M] = [[2.93479472 6.84785436 1.03984767]] ([3, 7, 1])
[2, 6, 5] x [M] = [[2.90302805 6.77373212 2.05926064]] ([3, 7, 2])
[1, 7, 5] x [M] = [[3.12539476 7.29258778 1.92336987]] ([3, 7, 2])
You can see, that it took all the specified inputs, got the transformed outputs and matched the outputs to the reference vectors. The results are not precise, since we have an approximation from the overspecified system. If we used INPUT and OUTPUT with only 3 vectors, the result would be exact.