I downloaded the Broad Dollar Index from FRED with the following format:
DATE RTWEXBGS
0 2006-01-01 100.0000
1 2006-02-01 100.2651
2 2006-03-01 100.5424
3 2006-04-01 100.0540
4 2006-05-01 97.8681
.. ... ...
194 2022-03-01 111.2659
195 2022-04-01 111.8324
196 2022-05-01 114.6075
197 2022-06-01 115.6957
198 2022-07-01 118.2674
I also got an Excel file of inflation rate with a different format:
Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual
0 2022 0.07480 0.07871 0.08542 0.08259 0.08582 0.09060 0.08525 NaN NaN NaN NaN NaN NaN
1 2021 0.01400 0.01676 0.02620 0.04160 0.04993 0.05391 0.05365 0.05251 0.05390 0.06222 0.06809 0.07036 0.04698
2 2020 0.02487 0.02335 0.01539 0.00329 0.00118 0.00646 0.00986 0.01310 0.01371 0.01182 0.01175 0.01362 0.01234
3 2019 0.01551 0.01520 0.01863 0.01996 0.01790 0.01648 0.01811 0.01750 0.01711 0.01764 0.02051 0.02285 0.01812
4 2018 0.02071 0.02212 0.02360 0.02463 0.02801 0.02872 0.02950 0.02699 0.02277 0.02522 0.02177 0.01910 0.02443
.. ... ... ... ... ... ... ... ... ... ... ... ... ... ...
104 1918 0.19658 0.17500 0.16667 0.12698 0.13281 0.13077 0.17969 0.18462 0.18045 0.18519 0.20741 0.20438 0.17284
105 1917 0.12500 0.15385 0.14286 0.18868 0.19626 0.20370 0.18519 0.19266 0.19820 0.19469 0.17391 0.18103 0.17841
106 1916 0.02970 0.04000 0.06061 0.06000 0.05941 0.06931 0.06931 0.07921 0.09901 0.10784 0.11650 0.12621 0.07667
107 1915 0.01000 0.01010 0.00000 0.02041 0.02020 0.02020 0.01000 -0.00980 -0.00980 0.00990 0.00980 0.01980 0.00915
108 1914 0.02041 0.01020 0.01020 0.00000 0.02062 0.01020 0.01010 0.03030 0.02000 0.01000 0.00990 0.01000 0.01349
How do I change the inflation table into a format similar to the dollar index?
Something like this(didn't take column=Annual into account),
df
###
Year Jan Feb Mar Apr May Jun Jul Aug \
0 2022 0.07480 0.07871 0.08542 0.08259 0.08582 0.09060 0.08525 NaN
1 2021 0.01400 0.01676 0.02620 0.04160 0.04993 0.05391 0.05365 NaN
2 2020 0.02487 0.02335 0.01539 0.00329 0.00118 0.00646 0.00986 NaN
Sep Oct Nov Dec Annual
0 NaN NaN NaN NaN NaN
1 NaN NaN NaN NaN NaN
2 NaN NaN NaN NaN NaN
month = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
df_melt = pd.melt(df, id_vars=['Year'], value_vars=month, var_name='Month', value_name='Sales')
df_melt['Date'] = pd.to_datetime(df_melt['Year'].astype(str) + '-' + df_melt['Month'].astype(str))
# convert Date column to datetime type
df_melt = df_melt[['Date', 'Sales']]
df_melt
###
Date Sales
0 2022-01-01 0.07480
1 2021-01-01 0.01400
2 2020-01-01 0.02487
3 2022-02-01 0.07871
4 2021-02-01 0.01676
5 2020-02-01 0.02335
6 2022-03-01 0.08542
7 2021-03-01 0.02620
8 2020-03-01 0.01539
9 2022-04-01 0.08259
10 2021-04-01 0.04160
11 2020-04-01 0.00329
12 2022-05-01 0.08582
13 2021-05-01 0.04993
14 2020-05-01 0.00118
15 2022-06-01 0.09060
16 2021-06-01 0.05391
17 2020-06-01 0.00646
18 2022-07-01 0.08525
19 2021-07-01 0.05365
20 2020-07-01 0.00986
21 2022-08-01 NaN
22 2021-08-01 NaN
23 2020-08-01 NaN
24 2022-09-01 NaN
25 2021-09-01 NaN
26 2020-09-01 NaN
27 2022-10-01 NaN
28 2021-10-01 NaN
29 2020-10-01 NaN
30 2022-11-01 NaN
31 2021-11-01 NaN
32 2020-11-01 NaN
33 2022-12-01 NaN
34 2021-12-01 NaN
35 2020-12-01 NaN
I have this df:
CODE TMAX TMIN PP
DATE
1991-01-01 000130 32.6 23.4 0.0
1991-01-02 000130 31.2 22.4 0.0
1991-01-03 000130 32.0 NaN 0.0
1991-01-04 000130 32.2 23.0 0.0
1991-01-05 000130 30.5 22.0 0.0
... ... ... ...
2020-12-27 158328 NaN NaN NaN
2020-12-28 158328 NaN NaN NaN
2020-12-29 158328 NaN NaN NaN
2020-12-30 158328 NaN NaN NaN
2020-12-31 158328 NaN NaN NaN
I have data of 30 years (1991-2020) for each CODE, and i want to calculate monthly normals of TMAX, TMIN and PP. So for TMAX and TMIN i should calculate the average for every month, so if January have 31 days i should get the mean of those 31 values and get a value for January 1991, January 1992, etc. So i will have 30 Januarys (January 1991, January 1992, ... ,January 2020), 30 Februarys, etc. After this i should calculate the average of every group of months (Januarys with Januarys, Februarys with Februarys, etc). So i will have 12 values (one value for every month). Example:
(January1991 + January1992 + ..... + January 2020) /30
(February1991 + February1992 + ..... + February 2020) /30
.... same for every group of months.
So i'm using this code but i don't know if it's ok.
from datetime import date
normalstemp=df[['CODE','TMAX','TMIN']].groupby([df.CODE, df.index.month]).mean().round(1)
For PP (precipitation) i should sum the values of every PP value of the month, so if January have 31 days i should sum all of their values and get a value for January 1991, January 1992, etc. So i will have 30 Januarys (January 1991, January 1992, ... ,January 2020) , 30 Februarys (February 1991, February 1992, ... ,February 2020), etc. After this i should calculate the average of every group of months (Januarys with Januarys, Februarys with Februarys, etc). So i will have 12 values (one value for every month, the same as TMAX and TMIN).
Example:
(January1991 + January1992 + ..... + January 2020) /30
(February1991 + February1992 + ..... + February 2020) /30
.... same for every group of months.
So im using this code but i know this code isn't correct because i'm not getting the mean of the januarys, februarys, etc.
normalspp=df[['CODE','PP']].groupby([df.CODE, df.index.month]).sum().round(1)
I only have basic knowledge of python so i will appreciate if you can help me.
Thanks in advance.
Ver 2: Average by Year-Month and by Month
import pandas as pd
import numpy as np
x = pd.date_range(start='1/1/1991', end='12/31/2020',freq='D')
df = pd.DataFrame({'Date':x.tolist()*2,
'Code':['000130']*10958 + ['158328']*10958,
'TMAX': np.random.randint(6,10, size=21916),
'TMIN': np.random.randint(1,5, size=21916)
})
# Create a Month column to get Average by Month for all years
df['Month'] = df.Date.dt.month
# Create a Year-Month column to get Average of each Month within the Year
df['Year_Mon'] = df.Date.dt.strftime('%Y-%m')
# Print the Average of each Month within each Year for each code
print (df.groupby(['Code','Year_Mon'])['TMAX'].mean())
print (df.groupby(['Code','Year_Mon'])['TMIN'].mean())
# Print the Average of each Month irrespective of the year (for each code)
print (df.groupby(['Code','Month'])['TMAX'].mean())
print (df.groupby(['Code','Month'])['TMAX'].mean())
If you want to give a name for the TMAX Average value, you can add the reset_index and rename column. Here's code to do that.
print (df.groupby(['Code','Year_Mon'])['TMAX'].mean().reset_index().rename(columns={'TMAX':'TMAX_Avg'}))
The output of this will be:
Average of TMAX for each Year-Month for each Code
Code Year_Mon
000130 1991-01 7.225806
1991-02 7.678571
1991-03 7.354839
1991-04 7.500000
1991-05 7.516129
...
158328 2020-08 7.387097
2020-09 7.300000
2020-10 7.516129
2020-11 7.500000
2020-12 7.451613
Name: TMAX, Length: 720, dtype: float64
Average of TMIN for each Year-Month for each Code
Code Year_Mon
000130 1991-01 2.419355
1991-02 2.571429
1991-03 2.193548
1991-04 2.366667
1991-05 2.451613
...
158328 2020-08 2.451613
2020-09 2.566667
2020-10 2.612903
2020-11 2.666667
2020-12 2.580645
Name: TMIN, Length: 720, dtype: float64
Average of TMAX for each Month for each Code (all years combined)
Code Month
000130 1 7.540860
2 7.536557
3 7.482796
4 7.486667
5 7.444086
6 7.570000
7 7.507527
8 7.529032
9 7.501111
10 7.401075
11 7.482222
12 7.517204
158328 1 7.532258
2 7.563679
3 7.490323
4 7.555556
5 7.500000
6 7.497778
7 7.545161
8 7.483871
9 7.526667
10 7.529032
11 7.547778
12 7.524731
Name: TMAX, dtype: float64
Average of TMIN for each Month for each Code (all years combined)
Code Month
000130 1 7.540860
2 7.536557
3 7.482796
4 7.486667
5 7.444086
6 7.570000
7 7.507527
8 7.529032
9 7.501111
10 7.401075
11 7.482222
12 7.517204
158328 1 7.532258
2 7.563679
3 7.490323
4 7.555556
5 7.500000
6 7.497778
7 7.545161
8 7.483871
9 7.526667
10 7.529032
11 7.547778
12 7.524731
Name: TMAX, dtype: float64
Ver 1: Average by Year and Month for each Code
Here is one way to do this.
You can create two columns - Year and Month. Then get the average of TMAX, TMIN, and PP for each month within the year by doing a groupby ('Code','Year_Mon')
See code for more details.
import pandas as pd
import numpy as np
# create a range of dates from 1/1/2018 thru 12/31/2020 for each day
x = pd.date_range(start='1/1/2018', end='12/31/2020',freq='D')
# create a dataframe with the date ranges x 2 for two codes
# TMIN is a random value from 1 thru 5 - you can put your actual data here
# TMAX is a random value from 6 thru 10 - you can put your actual data here
df = pd.DataFrame({'Date':x.tolist()*2,
'Code':['000130']*1096 + ['158328']*1096,
'TMAX': np.random.randint(6,10, size=2192),
'TMIN': np.random.randint(1,5, size=2192)
})
# Create a Year-Month column using df.Date.dt.strftime
df['Year_Mon'] = df.Date.dt.strftime('%Y-%m')
# Calculate the Average of TMAX and TMIN using groupby Code and Year_Mon
df['TMAX_Avg'] = df.groupby(['Code','Year_Mon'])['TMAX'].transform('mean')
df['TMIN_Avg'] = df.groupby(['Code','Year_Mon'])['TMIN'].transform('mean')
The output of this will be:
Date Code TMAX TMIN Year_Mon TMAX_Avg TMIN_Avg
0 2018-01-01 000130 8 2 2018-01 7.451613 2.129032
1 2018-01-02 000130 7 4 2018-01 7.451613 2.129032
2 2018-01-03 000130 9 2 2018-01 7.451613 2.129032
3 2018-01-04 000130 6 1 2018-01 7.451613 2.129032
4 2018-01-05 000130 9 4 2018-01 7.451613 2.129032
5 2018-01-06 000130 6 1 2018-01 7.451613 2.129032
6 2018-01-07 000130 9 2 2018-01 7.451613 2.129032
7 2018-01-08 000130 9 2 2018-01 7.451613 2.129032
8 2018-01-09 000130 7 2 2018-01 7.451613 2.129032
9 2018-01-10 000130 8 2 2018-01 7.451613 2.129032
10 2018-01-11 000130 8 3 2018-01 7.451613 2.129032
11 2018-01-12 000130 7 2 2018-01 7.451613 2.129032
12 2018-01-13 000130 7 1 2018-01 7.451613 2.129032
13 2018-01-14 000130 8 1 2018-01 7.451613 2.129032
14 2018-01-15 000130 7 3 2018-01 7.451613 2.129032
15 2018-01-16 000130 6 1 2018-01 7.451613 2.129032
16 2018-01-17 000130 6 3 2018-01 7.451613 2.129032
17 2018-01-18 000130 9 3 2018-01 7.451613 2.129032
18 2018-01-19 000130 7 2 2018-01 7.451613 2.129032
19 2018-01-20 000130 8 1 2018-01 7.451613 2.129032
20 2018-01-21 000130 9 4 2018-01 7.451613 2.129032
21 2018-01-22 000130 6 2 2018-01 7.451613 2.129032
22 2018-01-23 000130 9 4 2018-01 7.451613 2.129032
23 2018-01-24 000130 6 2 2018-01 7.451613 2.129032
24 2018-01-25 000130 8 3 2018-01 7.451613 2.129032
25 2018-01-26 000130 6 2 2018-01 7.451613 2.129032
26 2018-01-27 000130 8 1 2018-01 7.451613 2.129032
27 2018-01-28 000130 8 3 2018-01 7.451613 2.129032
28 2018-01-29 000130 6 1 2018-01 7.451613 2.129032
29 2018-01-30 000130 6 1 2018-01 7.451613 2.129032
30 2018-01-31 000130 8 1 2018-01 7.451613 2.129032
31 2018-02-01 000130 7 1 2018-02 7.250000 2.428571
32 2018-02-02 000130 6 2 2018-02 7.250000 2.428571
33 2018-02-03 000130 6 4 2018-02 7.250000 2.428571
34 2018-02-04 000130 8 3 2018-02 7.250000 2.428571
35 2018-02-05 000130 8 2 2018-02 7.250000 2.428571
36 2018-02-06 000130 6 3 2018-02 7.250000 2.428571
37 2018-02-07 000130 6 3 2018-02 7.250000 2.428571
38 2018-02-08 000130 7 1 2018-02 7.250000 2.428571
39 2018-02-09 000130 9 4 2018-02 7.250000 2.428571
40 2018-02-10 000130 8 2 2018-02 7.250000 2.428571
41 2018-02-11 000130 7 4 2018-02 7.250000 2.428571
42 2018-02-12 000130 8 1 2018-02 7.250000 2.428571
43 2018-02-13 000130 6 4 2018-02 7.250000 2.428571
44 2018-02-14 000130 6 1 2018-02 7.250000 2.428571
45 2018-02-15 000130 6 4 2018-02 7.250000 2.428571
46 2018-02-16 000130 8 2 2018-02 7.250000 2.428571
47 2018-02-17 000130 7 3 2018-02 7.250000 2.428571
48 2018-02-18 000130 9 3 2018-02 7.250000 2.428571
49 2018-02-19 000130 8 2 2018-02 7.250000 2.428571
If you want only the Code, Year-Month, and TMIN and TMAX values, you can do:
TMAX average for each month within the year:
print (df.groupby(['Code','Year_Mon'])['TMAX'].mean())
Output will be:
Code Year_Mon
000130 2018-01 7.451613
2018-02 7.250000
2018-03 7.774194
2018-04 7.366667
2018-05 7.451613
...
158328 2020-08 7.935484
2020-09 7.666667
2020-10 7.548387
2020-11 7.333333
2020-12 7.580645
TMIN average for each month within the year:
print (df.groupby(['Code','Year_Mon'])['TMIN'].mean())
Output will be:
Code Year_Mon
000130 2018-01 2.129032
2018-02 2.428571
2018-03 2.451613
2018-04 2.500000
2018-05 2.677419
...
158328 2020-08 2.709677
2020-09 2.166667
2020-10 2.161290
2020-11 2.366667
2020-12 2.548387
I have a data frame as shown below. which is a sales data of two health care product starting from December 2016 to November 2018.
product profit sale_date discount
A 50 2016-12-01 5
A 50 2017-01-03 4
B 200 2016-12-24 10
A 50 2017-01-18 3
B 200 2017-01-28 15
A 50 2017-01-18 6
B 200 2017-01-28 20
A 50 2017-04-18 6
B 200 2017-12-08 25
A 50 2017-11-18 6
B 200 2017-08-21 20
B 200 2017-12-28 30
A 50 2018-03-18 10
B 300 2018-06-08 45
B 300 2018-09-20 50
A 50 2018-11-18 8
B 300 2018-11-28 35
From the above I would like to prepare below dataframe and plot that into line plot.
Expected Output
bought_year total_profit
2016 250
2017 1250
2018 1000
X axis = bought_year
Y axis = profit
use groupby with dt.year and .agg to name your column.
df1 = df.groupby(df['sale_date'].dt.year).agg(total_profit=('profit','sum'))\
.reset_index().rename(columns={'sale_date': 'bought_year'})
print(df1)
bought_year total_profit
0 2016 250
1 2017 1250
2 2018 1000
df1.set_index('bought_year').plot(kind='bar')
Ok, so I have a dataset of temperatures for each day of the year, over a period of ten years. Index is date converted to datetime.
I want to get a dataset with only the min and max value for each calendar day throughout the 10-year period.
I can convert the index to a string, remove the year and get the dataset that way, but I'm guessing there is a smarter way to do it.
Use Series.dt.strftime with aggregate by GroupBy.agg with min and max:
np.random.seed(2020)
d = pd.date_range('2000-01-01', '2010-12-31')
df = pd.DataFrame({"temp": np.random.randint(0, 30, size=len(d))}, index=d)
print(df)
temp
2000-01-01 0
2000-01-02 8
2000-01-03 3
2000-01-04 22
2000-01-05 3
...
2010-12-27 16
2010-12-28 10
2010-12-29 28
2010-12-30 1
2010-12-31 28
[4018 rows x 1 columns]
df = df.groupby(df.index.strftime('%m-%d'))['temp'].agg(['min','max'])
print (df)
min max
01-01 0 28
01-02 0 29
01-03 3 21
01-04 1 28
01-05 0 26
... ...
12-27 3 29
12-28 4 27
12-29 0 29
12-30 1 29
12-31 2 28
[366 rows x 2 columns]
Last for datetimes is possible add year (be careful with leap years):
df.index = pd.to_datetime('2000-' + df.index, format='%Y-%m-%d')
print (df)
min max
2000-01-01 0 28
2000-01-02 0 29
2000-01-03 3 21
2000-01-04 1 28
2000-01-05 0 26
... ...
2000-12-27 3 29
2000-12-28 4 27
2000-12-29 0 29
2000-12-30 1 29
2000-12-31 2 28
[366 rows x 2 columns]
I have a dataframe like that:
df = pd.read_csv("fileA.csv", dtype=str, delimiter=";", skiprows = None, parse_dates=['Date'])
Date Buy Sell
0 01.08.2009 01:00 15 25
1 01.08.2009 02:00 0 30
2 01.08.2009 03:00 10 18
But I need that one (in 15-min-periods):
Date Buy Sell
0 01.08.2009 01:00 15 25
1 01.08.2009 01:15 15 25
2 01.08.2009 01:30 15 25
3 01.08.2009 01:45 15 25
4 01.08.2009 02:00 0 30
5 01.08.2009 02:15 0 30
6 01.08.2009 02:30 0 30
7 01.08.2009 02:45 0 30
8 01.08.2009 03:00 10 18
....and so on.
I have tried df.resample(). But it does not worked. Does someone know a nice pandas method?!
If fileA.csv looks like this:
Date;Buy;Sell
01.08.2009 01:00;15;25
01.08.2009 02:00;0;30
01.08.2009 03:00;10;18
then you could parse the data with
df = pd.read_csv("fileA.csv", delimiter=";", parse_dates=['Date'])
so that df will look like this:
In [41]: df
Out[41]:
Date Buy Sell
0 2009-01-08 01:00:00 15 25
1 2009-01-08 02:00:00 0 30
2 2009-01-08 03:00:00 10 18
You might want to check df.info() to make sure you successfully parsed your data into a DataFrame with three columns, and that the Date column has dtype datetime64[ns]. Since the repr(df) you posted prints the date in a different format and the column headers do not align with the data, there is a good chance that the data has not yet been parsed properly. If that's true and you post some sample lines from the csv, we should be able help you parse the data into a DataFrame.
In [51]: df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 3 entries, 0 to 2
Data columns (total 3 columns):
Date 3 non-null datetime64[ns]
Buy 3 non-null int64
Sell 3 non-null int64
dtypes: datetime64[ns](1), int64(2)
memory usage: 96.0 bytes
Once you have the DataFrame correctly parsed, resampling to 15 minute time periods can be done with asfreq with forward-filling the missing values:
In [50]: df.set_index('Date').asfreq('15T', method='ffill')
Out[50]:
Buy Sell
2009-01-08 01:00:00 15 25
2009-01-08 01:15:00 15 25
2009-01-08 01:30:00 15 25
2009-01-08 01:45:00 15 25
2009-01-08 02:00:00 0 30
2009-01-08 02:15:00 0 30
2009-01-08 02:30:00 0 30
2009-01-08 02:45:00 0 30
2009-01-08 03:00:00 10 18