I have a dataframe that looks like this, where the "Date" is set as the index
A B C D E
Date
1999-01-01 1 2 3 4 5
1999-01-02 1 2 3 4 5
1999-01-03 1 2 3 4 5
1999-01-04 1 2 3 4 5
I'm trying to compare the percent difference between two pairs of dates. I think I can do the first bit:
start_1 = "1999-01-02"
end_1 = "1999-01-03"
start_2 = "1999-01-03"
end_2 = "1999-01-04"
Obs_1 = df.loc[end_1] / df.loc[start_1] -1
Obs_2 = df.loc[end_2] / df.loc[start_2] -1
The output I get from - eg Obs_1 looks like this:
A 0.011197
B 0.007933
C 0.012850
D 0.016678
E 0.007330
dtype: float64
I'm looking to build some correlations between Obs_1 and Obs_2. I think I need to create a new dataframe with the labels A-E as one column (or as the index), and then the data series from Obs_1 and Obs_2 as adjacent columns.
But I'm struggling! I can't 'see' what Obs_1 and Obs_2 'are' - have I created a list? A series? How can I tell? What would be the best way of combining the two into a single dataframe...say df_1.
I'm sure the answer is staring me in the face but I'm going mental trying to figure it out...and because I'm not quite sure what Obs_1 and Obs_2 'are', it's hard to search the SO archive to help me.
Thanks in advance
Related
The code below:
df = pd.read_csv('./filename.csv', header='infer').dropna()
df.groupby(['category_code','event_type']).event_type.count().head(20)
Returns the following table:
How can I obtain, for all the sub groups under event_type that have both "purchase" and "view", the ratio between the total of "purchase" and the total of "view"?
In this specific case, for instance, I need a function that returns:
1/57
1/232
3/249
Eventually, I will need to plot such result.
I have been trying for a day, without success. I am still new to pandas, and I searched across every possible forum without finding anything useful.
Next time please consider adding a sample of your data as text instead of as an image. It helps us testing..
Anyway, in your case you can combine different dataframe methods, such as groupby, as you have already done, and pivot_table. I used this data just as an example:
category_code event_type
0 A purchase
1 A view
2 B view
3 B view
4 C view
5 D purchase
6 D view
7 D view
You can create a new column from your groupby
df['event_count'] = df.groupby(['category_code', 'event_type'])\
.event_type.transform('count')
Then create a pivot_table
my_table = df.pivot_table(values='event_count',
index='category_code',
columns='event_type',
fill_value=0)
Then, finally, you can calculate the purchase_ratio directly:
my_table['purchase_ratio'] = my_table['purchase'] / my_table['view']
Which results in the following DataFrame:
event_type purchase view purchase_ratio
category_code
A 1 1 1.0
B 0 2 0.0
C 0 1 0.0
D 1 2 0.5
I can think of 2 ways of doing this:
Apply df.query to match each row, then collect the index of each result
Set the column domain to be the index, and then reorder based on the index (but this would lose the index which I want, so may be trickier)
However I'm not sure these are good solutions (I may be missing something obvious)
Here's an example set up:
domain_vals = list("ABCDEF")
df_domain_vals = list("DECAFB")
df_num_vals = [0,5,10,15,20,25]
df = pd.DataFrame.from_dict({"domain": df_domain_vals, "num": df_num_vals})
This gives df:
domain num
0 D 0
1 E 5
2 C 10
3 A 15
4 F 20
5 B 25
1: Use df.query on each row
So I want to reorder the rows according using the values in order of domain_vals for the column domain.
A possible way to do this is to repeatedly use df.query but this seems like an un-Pythonic (un-panda-ese?) solution:
>>> pd.concat([df.query(f"domain == '{d}'") for d in domain_vals])
domain num
3 A 15
5 B 25
2 C 10
0 D 0
1 E 5
4 F 20
2: Setting the column domain as the index
reorder = df.domain.apply(lambda x: domain_vals.index(x))
df_reorder = df.set_index(reorder)
df_reorder.sort_index(inplace=True)
df_reorder.index.name = None
Again this gives
>>> df_reorder
domain num
0 A 15
1 B 25
2 C 10
3 D 0
4 E 5
5 F 20
Can anyone suggest something better (in the sense of "less of a hack"). I understand that my solution works, I just don't think that calling pandas.concat along with a list comprehension is the right approach here.
Having said that, it's shorter than the 2nd option, so I presume there must be some equally simple way I can do this with pandas methods I've overlooked?
Another way is merge:
(pd.DataFrame({'domain':df_domain_vals})
.merge(df, on='domain', how='left')
)
I have two dataframes, assume A and B, which have been created after reading the sheets of an Excel file and performing some basic functions. I need to merge right the two dataframes on a column named ID which has first been converted to astype(str) for both dataframes.
The ID column of the left Dataframe (A) is:
0 5815518813016
1 5835503994014
2 5835504934023
3 5845535359006
4 5865520960012
5 5865532845006
6 5875531550008
7 5885498289039
8 5885498289039_A2
9 5885498289039_A3
10 5885498289039_X2
11 5885498289039_X3
12 5885509768698
13 5885522349999
14 5895507791025
Name: ID, dtype: object
The ID column of the right Dataframe (B) is:
0 5835503994014
1 5845535359006
2 5835504934023
3 5815518813016
4 5885498289039_A1
5 5885498289039_A2
6 5885498289039_A3
7 5885498289039_X1
8 5885498289039_X2
9 5885498289039_X3
10 5885498289039
11 5865532845006
12 5875531550008
13 5865520960012
14 5885522349998
15 5895507791025
16 5885509768698
Name: ID, dtype: object
However, when I merge the two, the rest of the columns of the left (A) dataframe become "empty" (np.nan) except for the rows where the ID does not contain only numbers but letters too. This is the pd.merge() I do:
A_B=A.merge(B[['ID','col_B']], left_on='ID', right_on='ID', how='right')
Do you have any ideas what might be so wrong? Your input is valuable.
Try turning all values in both columns into strings:
A['ID'] = A['ID'].astype(str)
B['ID'] = B['ID'].astype(str)
Generally, when a merge like this doesn't work, I would try to debug by printing out the unique values in each column to check if anything pops out (usually dtype issues).
I am fairly new to python pandas and cannot find the answer to my problem in any older posts.
I have a simple dataframe that looks something like that:
dfA ={'stop':[1,2,3,4,5,1610,1611,1612,1613,1614,2915,...]
'seq':[B, B, D, A, C, C, A, B, A, C, A,...] }
Now I want to merge the 'seq' values from each group, where the difference between the next and previous value in 'stop' is equal to 1. When the difference is high like 5 and 1610, that is where the next cluster begins and so on.
What I need is to write all values from each cluster into separate rows:
0 BBDAC #join'stop' cluster 1-5
1 CABAC #join'stop' cluster 1610-1614
2 A.... #join'stop' cluster 2015 - ...
etc...
What I am getting with my current code is like:
True BDACABAC...
False BCA...
for the entire huge dataframe.
I understand the logic behid the whay it merges it, which is meeting the condition (not perfect, loosing cluster edges) I specified, but I am running out of ideas if I can get it joined and split properly into clusters somehow, not all rows of the dataframe.
Please see my code below:
dfB = dfA.groupby((dfA.stop - dfA.stop.shift(1) == 1))['seq'].apply(lambda x: ''.join(x)).reset_index()
Please help.
P.S. I have also tried various combinations with diff() but that didn't help either. I am not sure if groupby is any good for this solution as well. Please advise!
dfC = dfA.groupby((dfA['stop'].diff(periods=1)))['seq'].apply(lambda x: ''.join(x)).reset_index()
This somehow splitted the dataframe into smaller chunks, cluster-like, but I am not understanding the legic behind the way it did it, and I know the result makes no sense and is not what I intended to get.
I think you need create helper Series for grouping:
g = dfA['stop'].diff().ne(1).cumsum()
dfC = dfA.groupby(g)['seq'].apply(''.join).reset_index()
print (dfC)
stop seq
0 1 BBDAC
1 2 CABAC
2 3 A
Details:
First get differences by diff:
print (dfA['stop'].diff())
0 NaN
1 1.0
2 1.0
3 1.0
4 1.0
5 1605.0
6 1.0
7 1.0
8 1.0
9 1.0
10 1301.0
Name: stop, dtype: float64
Compare by ne (!=) for first values of groups:
print (dfA['stop'].diff().ne(1))
0 True
1 False
2 False
3 False
4 False
5 True
6 False
7 False
8 False
9 False
10 True
Name: stop, dtype: bool
Asn last create groups by cumsum:
print (dfA['stop'].diff().ne(1).cumsum())
0 1
1 1
2 1
3 1
4 1
5 2
6 2
7 2
8 2
9 2
10 3
Name: stop, dtype: int32
I just figured it out.
I managed to round the values of 'stop' to a nearest 100 and assigned it as a new column.
Then my previous code is working....
Thank you so much for quick answer though.
dfA['new_val'] = (dfA['stop'] / 100).astype(int) *100
I have a dataframe that contains information that is linked by an ID column. The rows are sequential with the odd rows containing a "start-point" and the even rows containing an "end" point. My goal is to collapse the data from these into a single row with columns for "start" and "end" following each other. The rows do have a "packet ID" that would link them if the sequential nature of the dataframe is not consistent.
example:
df:
0 1 2 3 4 5
0 hs6 106956570 106956648 ID_A1 60 -
1 hs1 153649721 153649769 ID_A1 60 -
2 hs1 865130744 865130819 ID_A2 0 -
3 hs7 21882206 21882237 ID_A2 0 -
4 hs1 74230744 74230819 ID_A3 0 +
5 hs8 92041314 92041508 ID_A3 0 +
The resulting dataframe that I am trying to achieve is:
new_df
0 1 2 3 4 5
0 hs6 106956570 106956648 hs1 153649721 153649769
1 hs1 865130744 865130819 hs7 21882206 21882237
2 hs1 74230744 74230819 hs8 92041314 92041508
with each row containing the information on both the start and the end-point.
I have tried to pass the IDs in to an array and use a for loop to pull the information out of the original dataframe into a new dataframe but this has not worked. I was looking at the melt documentation which would suggest that pd.melt(df, id_vars=[3], value_vars=[0,1,2]) may work but I cannot see how to get the corresponding row in to positions new_df[3,4,5].
I think that it may be something really simple that I am missing but any suggestions would be appreciated.
You can try this:
df_out = df.set_index([df.index%2, df.index//2])[df.columns[:3]]\
.unstack(0).sort_index(level=1, axis=1)
df_out.columns = np.arange(len(df_out.columns))
df_out
Output:
0 1 2 3 4 5
0 hs6 106956570 106956648 hs1 153649721 153649769
1 hs1 865130744 865130819 hs7 21882206 21882237
2 hs1 74230744 74230819 hs8 92041314 92041508