Async jobs cancellation causes parent cancellation - kotlin

I tried to run two async jobs.
There is a button when clicked, would cancel one of the jobs. But I noticed when I do it, the other job will be cancelled too.
What happened?
class SplashFragment : BaseFragment(R.layout.fragment_splash), CoroutineScope by MainScope() {
override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
super.onViewCreated(view, savedInstanceState)
launch {
val countdown = async { countDown() }
val ipAndMaintain = async { checkIPAndMaintain() }
btnSkip.onClick {
countdown.cancel() // cancel countdown
btnSkip.isVisible = false
if (!ipAndMaintain.isCompleted) {
showLoadingDialog()
}
}
countdown.await()
startOtherPage(ipAndMaintain.await())
}
}
private suspend fun countDown() {
var time = 3
while (time >= 0) {
btnSkip.text = getString(R.string.skip, time)
delay(1000)
yield()
time--
}
}
private suspend fun checkIPAndMaintain(): Int {
delay(2000)
return 1
}
}

When you call await on a cancelled Deferred it throws an Exception. If you don't catch it then it will be propagated to the parent coroutine which will cancel all its children. Wrap your countdown.await() instruction with a try-catch block and you'll see that the other coroutine continues. That's the effect of structured concurrency.
You can read this article by Roman Elizarov about the topic.

Related

Why won't my UI update while a background task is running?

I have this code that should show a counter while a background task is running:
#Composable fun startIt() {
val scope = rememberCoroutineScope()
val running = remember { mutableStateOf(false) }
Button({ scope.launch { task(running) } }) {
Text("start")
}
if (running.value) Counter()
}
#Composable private fun Counter() {
val count = remember { mutableStateOf(0) }
LaunchedEffect(Unit) {
while (true) {
delay(100.milliseconds)
count.value += 1
}
}
Text(count.toString())
}
private suspend fun task(running: MutableState<Boolean>) {
running.value = true
coroutineScope {
launch {
// some code that blocks this thread
}
}
running.value = false
}
If I understand correctly, the coroutineScope block in task should unblock the main thread, so that the LaunchedEffect in Counter can run. But that block never gets past the first delay, and never returns or gets cancelled. The counter keeps showing 0 until the task finishes.
How do I allow Compose to update the UI properly?
coroutineScope doesn't change the coroutine context, so I think you're launching a child coroutine that runs in the same thread.
The correct way to synchronously do blocking work in a coroutine without blocking the thread is by using withContext(Dispatchers.IO):
private suspend fun task(running: MutableState<Boolean>) {
running.value = true
withContext(Dispatchers.IO) {
// some code that blocks this thread
}
running.value = false
}
If the blocking work is primarily CPU-bound, it is more appropriate to use Dispatchers.Default instead, I think because it helps prevent the backing thread pool from spawning more threads than necessary for CPU work.
This was a small issue of the way count was being modified, and not of coroutines. To fix your code, the remember for count in Counter() needed to be updated to :
#OptIn(ExperimentalTime::class)
#Composable private fun Counter() {
val count = remember { mutableStateOf(0) }
LaunchedEffect(Unit) {
while (true) {
delay(Duration.milliseconds(100))
count.value += 1
}
}
Text(count.value.toString())
}
Remember can be done with delegation to remove the need of using the .value such as:
#OptIn(ExperimentalTime::class)
#Composable private fun Counter() {
var count by remember { mutableStateOf(0) }
LaunchedEffect(Unit) {
while (true) {
delay(Duration.milliseconds(100))
count += 1
}
}
Text(count.toString())
}
Compose does coroutines slightly differently than Kotlin would by default, this is a small example that shows a bit more of how Compose likes Coroutines to be done:
class MainActivity : ComponentActivity() {
override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContent {
Compose_coroutinesTheme {
Surface(modifier = Modifier.fillMaxSize(), color = MaterialTheme.colors.background) {
BaseComponent()
}
}
}
}
}
// BaseComponent holds most of the state, child components respond to its values
#Composable
fun BaseComponent() {
var isRunning by remember { mutableStateOf(false) }
val composableScope = rememberCoroutineScope()
val count = remember { mutableStateOf(0) }
Column(verticalArrangement = Arrangement.Center, horizontalAlignment = Alignment.CenterHorizontally) {
Text("Count: ${count.value}")
// Using the async context of a button click, we can toggle running off and on, as well as run our background task for incrementing the counter
ToggleCounter(isRunning) {
isRunning = !isRunning
composableScope.launch {
while (isRunning) {
delay(100L)
count.value += 1
}
}
}
}
}
// Accepting an onTap function and passing it into our button, allows us to modify state as a result of the button, without the button needing to know anything more
#Composable
fun ToggleCounter(isRunning: Boolean, onTap: () -> Unit) {
val buttonText = if (isRunning) "Stop" else "Start"
Button(onClick = onTap) {
Text(buttonText)
}
}

Why is my channel closed whenever I send the data

I have my code below
interface Listener {
fun onGetData(data: Int)
fun onClose()
}
class MyEmitter {
var listener: Listener? = null
fun sendData(data: Int) = listener?.onGetData(data)
fun close() = listener?.onClose()
}
fun handleInput(myEmitter: MyEmitter) = channelFlow {
myEmitter.listener = object:Listener {
override fun onGetData(data: Int) { trySend(data) }
override fun onClose() { close() }
}
}
fun main(): Unit = runBlocking {
val myEmitter = MyEmitter()
handleInput(myEmitter).collect {
println(it)
}
myEmitter.sendData(1)
myEmitter.sendData(2)
myEmitter.close()
}
Whenever I send the data e.g. myEmitter.sendData(1), it does get into trySend(data), but the result is closed.
Why is it closed? How can I keep it open?
I think it's not documented terribly clearly, but just like the flow builder, the channelFlow's Flow is considered complete once the suspend lambda returns. Since all you are doing is setting a listener and not waiting around, it will return almost immediately. When a channel Flow is completed, it's channel is also closed.
If you want your channelFlow to stay open until the Flow is canceled, call awaitClose() at the end. This function suspends until the channel is closed, so it will hold your Flow open until it's canceled or the event in your listener closes the Channel.
fun handleInput(myEmitter: MyEmitter) = channelFlow {
myEmitter.listener = object:Listener {
override fun onGetData(data: Int) { trySend(data) }
override fun onClose() { close() }
}
awaitClose()
}
If you are familiar with callbackFlow, it is a specialized version of channelFlow and it enforces the awaitClose() call because it is meant for waiting for a listener, so there's no reason you would ever not want to await. It's also where you can deregister any listener you created inside the flow builder.
To get this working, I did 3 things
Add awaitClose to ensure the flow is not terminated
Move the entire flow behind launch, so that it is not blocking the main() function flow
Add a little delay before myEmitter.sendData(1), so that to ensure the launch get triggered first before doing the external sendData.
Full changed code as below
interface Listener {
fun onGetData(data: Int)
fun onClose()
}
class MyEmitter {
var listener: Listener? = null
fun sendData(data: Int) = listener?.onGetData(data)
fun close() = listener?.onClose()
}
fun handleInput(myEmitter: MyEmitter) = channelFlow {
myEmitter.listener = object:Listener {
override fun onGetData(data: Int) { trySend(data) }
override fun onClose() { close() }
}
awaitClose { myEmitter.listener = null } // Need awaitClose to keep the flow alive
}
fun main(): Unit = runBlocking {
val myEmitter = MyEmitter()
launch { // Need to run to avoid it from blocking the main() function flow due to having `awaitClose` there
handleInput(myEmitter).collect {
println(it)
}
}
delay(100) // Add some delay to get this triggered after the launch run
myEmitter.sendData(1)
myEmitter.sendData(2)
myEmitter.close()
}
The 3rd step is a little hack I think.

Is there a way how I can run code on multiple threads so it gets executed faster and then wait for all of them to complete?

I have 2 functions, I need the first one to be completed first and then the second, but running it on one thread took a long time so I tried running it like with CoroutineScope, but the second function executes even if not all images are downloaded.
downloadSkillsImages(context)
addSkillsToDB()
private suspend fun downloadSkillsImages(context: Context) {
for (i in 0 until skills.size) {
CoroutineScope(IO).launch {
try {
val url = fbStorage.reference.child("skillImagesMini").child("${skills[i].skillId}.jpg").downloadUrl.await()
skills[i].skillImage = getBitmapFromUri(url, context)
}catch (e: Exception){
//image not found, nothing happens
}
}
}
}
This is what the coroutineScope scope function is for. It waits for all its children coroutines to finish.
private suspend fun downloadSkillsImages(context: Context) = coroutineScope {
for (i in skills.indices) {
launch(Dispatchers.IO) {
try {
val url = fbStorage.reference.child("skillImagesMini").child("${skills[i].skillId}.jpg").downloadUrl.await()
skills[i].skillImage = getBitmapFromUri(url, context)
} catch (e: Exception){
//image not found, nothing happens
}
}
}
}
Note, you only need to specify Dispatchers.IO if getBitmapFromUri is a blocking function. If it's a suspend function, then nothing in this child coroutine is blocking, so it wouldn't matter what dispatcher is used to call it.
Since you want your coroutines to all finish and silently ignore the ones that fail, you can simplify this by using supervisorScope instead of coroutineScope so you don't need try/catch. supervisorScope will complete successfully even if some of its children fail.
private suspend fun downloadSkillsImages(context: Context) = supervisorScope {
for (i in skills.indices) {
launch(Dispatchers.IO) {
val url = fbStorage.reference.child("skillImagesMini").child("${skills[i].skillId}.jpg").downloadUrl.await()
skills[i].skillImage = getBitmapFromUri(url, context)
}
}
}

After a coroutine scope is canceled, can it still be used again?

When we have a coroutine scope, when it is canceled, can it be used again?
e.g. for the below, when I have scope.cancel, the scope.launch no longer work
#Test
fun testingLaunch() {
val scope = MainScope()
runBlocking {
scope.cancel()
scope.launch {
try {
println("Start Launch 2")
delay(200)
println("End Launch 2")
} catch (e: CancellationException) {
println("Cancellation Exception")
}
}.join()
println("Finished")
}
}
Similarly, when we have scope.cancel before await called,
#Test
fun testingAsync() {
val scope = MainScope()
runBlocking {
scope.cancel()
val defer = scope.async {
try {
println("Start Launch 2")
delay(200)
println("End Launch 2")
} catch (e: CancellationException) {
println("Cancellation Exception")
}
}
defer.await()
println("Finished")
}
}
It will not execute. Instead, it will crash with
kotlinx.coroutines.JobCancellationException: Job was cancelled
; job=SupervisorJobImpl{Cancelled}#39529185
at kotlinx.coroutines.JobSupport.cancel(JobSupport.kt:1579)
at kotlinx.coroutines.CoroutineScopeKt.cancel(CoroutineScope.kt:217)
at kotlinx.coroutines.CoroutineScopeKt.cancel$default(CoroutineScope.kt:215)
at com.example.coroutinerevise.CoroutineExperiment$testingAsync$1.invokeSuspend(CoroutineExperiment.kt:241)
at |b|b|b(Coroutine boundary.|b(|b)
at kotlinx.coroutines.DeferredCoroutine.await$suspendImpl(Builders.common.kt:101)
at com.example.coroutinerevise.CoroutineExperiment$testingAsync$1.invokeSuspend(CoroutineExperiment.kt:254)
Caused by: kotlinx.coroutines.JobCancellationException: Job was cancelled; job=SupervisorJobImpl{Cancelled}#39529185
at kotlinx.coroutines.JobSupport.cancel(JobSupport.kt:1579)
at kotlinx.coroutines.CoroutineScopeKt.cancel(CoroutineScope.kt:217)
at kotlinx.coroutines.CoroutineScopeKt.cancel$default(CoroutineScope.kt:215)
at com.example.coroutinerevise.CoroutineExperiment$testingAsync$1.invokeSuspend(CoroutineExperiment.kt:241)
at kotlin.coroutines.jvm.internal.BaseContinuationImpl.resumeWith(ContinuationImpl.kt:33)
Is it true, a canceled coroutine scope cannot be used for launch or async anymore?
Instead of using CoroutineScope for cancelling all of the launched jobs in it, you may want to use the underlying CoroutineContext with its cancelChildren() method which doesn't affect the Job state (which is not true for plain cancel() method) and allows to continue launching new coroutines after being invoked.
Following up on #Alex Bonel response.
For example you have a method like
fun doApiCall() {
viewModelScope.launch {
// do api call here
}
}
You can call doApiCall() again and again
viewModelScope.coroutineContext.cancelChildren()
doApiCall()
Calling doApiCall() will not have any effect.
viewModelScope.coroutineContext.cancel()
doApiCall() // would not call
I am using that in compose and it is slightly different.
Define coroutine scope in compose
val coroutineScope = rememberCoroutineScope()
Launch coroutine
coroutineScope.launch(Dispatchers.Main) { //Perform your operation }
Cancel all coroutines that belong to coroutineScope
coroutineScope.coroutineContext.cancelChildren()
Related to lifecycleScope comment above, I'm not sure how common cancellation like this would be in practice? fwiw something like following will work:
val scope = MainScope()
runBlocking {
val job1 = scope.launch {
try {
println("Start Launch 1")
delay(200)
println("End Launch 1")
} catch (e: CancellationException) {
println("Cancellation Exception")
}
}
job1.cancel()
val job2 = scope.launch {
try {
println("Start Launch 2")
delay(200)
println("End Launch 2")
} catch (e: CancellationException) {
println("Cancellation Exception")
}
}
job2.join()
println("Finished")
}
This particular example will print
Start Launch 1
Cancellation Exception
Start Launch 2
End Launch 2
Finished
I needed to collect the event just once and then stop listening. I came up with this solution:
/**
* Collect the value once and stop listening (one-time events)
*/
suspend fun <T> Flow<T>.collectOnce(action: suspend (value: T) -> Unit) {
try {
coroutineScope {
collectLatest {
action(it)
this#coroutineScope.cancel()
}
}
} catch (e: CancellationException) { }
}
You can use it like this:
viewModelScope.launch {
myStateFlow.collectOnce {
// Code to run
}
}

Catching an error of a coroutine launch call

in the following code:
private fun executeCognitoRequest(result: MethodChannel.Result, block: suspend CoroutineScope.() -> Any?) {
try {
CoroutineScope(Dispatchers.Default).launch {
val requestResult = block()
withContext(Dispatchers.Main) {
result.success(requestResult)
}
}
} catch (exception: Exception) {
val cognitoErrorType = CognitoErrorType.getByException(exception)
result.error(cognitoErrorType.code, null, null)
}
}
if the call to block throws, will it be caught?
It will be caught, but the problem with your code is that you violate the principles of structured concurrency and launch a coroutine in the GlobalScope. So if you test your code from a main function like this:
fun main() {
runBlocking {
executeCognitoRequest(MethodChannel.Result()) {
funThatThrows()
}
}
}
the whole program will end before the coroutine has completed execution.
This is how you should write your function:
private fun CoroutineScope.executeCognitoRequest(
result: MethodChannel.Result,
block: suspend CoroutineScope.() -> Any?
) {
try {
launch(Dispatchers.IO) {
val requestResult = block()
withContext(Dispatchers.Main) {
result.success(requestResult)
}
}
} catch (exception: Exception) {
val cognitoErrorType = CognitoErrorType.getByException(exception)
result.error(cognitoErrorType.code, null, null)
}
}
Now your function is an extension on CoroutineScope and launch is automatically called with that receiver. Also, for blocking IO calls you shouldn't use the Default but the IO dispatcher.
However, I find your higher-level design weird, you start from blocking code and turn it into async, callback-oriented code. Coroutines are there to help you get rid of callbacks.