Why does dropping a nested column in pyspark doesn't work? - dataframe

trying to drop a nested column from a dataframe in pyspark doesn't work.
This is the sinppet from my code:
`from pyspark.sql import functions as F
from pyspark.sql.types import IntegerType , BooleanType
from pyspark.sql.functions import udf
#simple filter function
#F.udf(returnType=BooleanType())
def my_filter(x):
if (x != df_new.a.b) :
return True
else :
return False
#df.filter(my_filter('id', 'category')).show()
def drop_col(df, struct_nm, delete_struct_child_col_nm):
#fields_to_keep = filter(lambda x: x != delete_struct_child_col_nm, df.select("{}.*".format(struct_nm)).columns)
fields_to_keep = filter(lambda x: my_filter(x) , df.select("{}.*".format(struct_nm)).columns)
fields_to_keep = list(map(lambda x: "{}.{}".format(struct_nm, x), fields_to_keep))
return df.withColumn(struct_nm, struct(fields_to_keep))
drop_col(df_new, "a", df_new.a.b)`
I used UDF because
trying the following line didn't work. As this not != symbol doesn't work nor does using tilde
#fields_to_keep = filter(lambda x: x != delete_struct_child_col_nm, df.select("{}.*".format
EDIT:
Someone asked for schema in the comment so i am providing it
root
|-- a: struct (nullable = false)
| |-- rawEntity: string (nullable = true)
| |-- entityType: string (nullable = true)
| | |-- element: struct (containsNull = true)
| | | |-- StoreId: string (nullable = true)
| | | |-- AppId: string (nullable = true)
| |-- Timestamps: array (nullable = true)
| | |-- element: long (containsNull = true)
| |-- User: string (nullable = true)
| |-- b: array (nullable = true) //trying to drop this
| | |-- element: string (containsNull = true)
| |-- KeywordsFull: array (nullable = true)
| | |-- element: struct (containsNull = true)
| | | |-- Keywords: string (nullable = true)
| | |-- element: string (containsNull = true)

Related

Spark - Merge two columns of array struct type

I have a dataframe of schema -
|-- A: string (nullable = true)
|-- B: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- key: string (nullable = true)
| | |-- x: double (nullable = true)
| | |-- y: double (nullable = true)
| | |-- z: double (nullable = true)
|-- C: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- key: string (nullable = true)
| | |-- x: double (nullable = true)
| | |-- y: double (nullable = true)
I want to merge column B & C (array_union). But array_union is not working because of different data types of these columns. Structs of B & C have pretty much same columns except z. I don't care about z - whether it is present or not - in their merged output.
What would be a good way to achieve this?
Sure, drop Z in B and then array_join()
new = (df1.withColumn('B',expr("transform(B,s->struct(s.key as key,s.x as x, s.y as y))"))#drop Z
.withColumn('D', array_union(col('B'),col('C')))#array_join
.drop('B','C')#Drop B and C if not needed
).printSchema()
root
|-- A: string (nullable = false)
|-- D: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- key: string (nullable = true)
| | |-- x: double (nullable = true)
| | |-- y: double (nullable = true)
Transform the column 'C' like this and use the array_union after:
import pyspark.sql.functions as f
df = (df
.withColumn('z', f.expr("transform(C, element -> cast(1 AS double))"))
.withColumn('C', f.expr("transform(C, (element, idx) -> struct(element_at(C.x, idx + 1) AS x, element_at(C.y, idx + 1) AS y, element_at(z, idx + 1) AS z))"))
.drop('z')
)

Flatten dataframe with nested struct ArrayType using pyspark

I have a dataframe with this schema
root
|-- AUTHOR_ID: integer (nullable = false)
|-- NAME: string (nullable = true)
|-- Books: array (nullable = false)
| |-- element: struct (containsNull = false)
| | |-- BOOK_ID: integer (nullable = false)
| | |-- Chapters: array (nullable = true)
| | | |-- element: struct (containsNull = true)
| | | | |-- NAME: string (nullable = true)
| | | | |-- NUMBER_PAGES: integer (nullable = true)
How to flat all columns into one level with Pyspark ?
Using inline function:
df2 = (df.selectExpr("AUTHOR_ID", "NAME", "inline(Books)")
.selectExpr("*", "inline(Chapters)")
.drop("Chapters")
)
Or explode:
from pyspark.sql import functions as F
df2 = (df.withColumn("Books", F.explode("Books"))
.select("*", "Books.*")
.withColumn("Chapters", F.explode("Chapters"))
.select("*", "Chapters.*")
)

pyspark: rearrange nested array of struct sequence

I've a dataframe in this format and I would like to rearrange the fields inside item column.
root
|-- order: string (nullable = true)
|-- dt: struct (nullable = true)
|-- item: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- a: long (nullable = true)
| | |-- b: string (nullable = true)
| | |-- c: long (nullable = true)
So this is the desired format I'm looking for.
root
|-- order: string (nullable = true)
|-- dt: struct (nullable = true)
|-- item: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- a: long (nullable = true)
| | |-- c: string (nullable = true)
| | |-- b: long (nullable = true)
You can use transform function:
from pyspark.sql import functions as F
result = df.withColumn(
"item",
F.expr("transform(item, x -> struct(x.a as a, x.c as c, x.b as b))")
)

translate from spark function calls to SQL

I have a Dataset with the schema below.
root
|-- acct_id: long (nullable = true)
|-- firm_bnkg_id: integer (nullable = true)
|-- tagged: long (nullable = true)
|-- transactions: array (nullable = false)
| |-- element: struct (containsNull = true)
| | |-- mo_yr_buckt: string (nullable = false)
| | |-- acct_id: long (nullable = false)
| | |-- eff_dt: date (nullable = true)
| | |-- extn_txn_cd: string (nullable = true)
| | |-- mntr_txn_am: double (nullable = true)
| | |-- cr_dr_in: string (nullable = true)
| | |-- txn_desc_tx: string (nullable = true)
| | |-- txn_auth_dt: date (nullable = false)
| | |-- txn_auth_ts: string (nullable = false)
| | |-- tagged: long (nullable = true)
| | |-- firm_bnkg_id: integer (nullable = false)
| | |-- txn_pst_sq_nb: string (nullable = false)
| | |-- pst_dt: integer (nullable = false)
|-- prty_ol_prfl_id: long (nullable = true)
|-- prod_cd: string (nullable = true)
|-- acct_type_cd: string (nullable = true)
|-- acct_state_cd: string (nullable = true)
Now I want to change the current code to a SQL statement. The current code is like this:
val result = ds.select(col("*"), explode(col("transactions")).as("txn"))
.where("IsValidUDF(txn) = TRUE").groupBy("prty_ol_prfl_id")
.agg(collect_list("txn").as("transactions"))
which produces the following schema:
root
|-- acct_id: long (nullable = true)
|-- firm_bnkg_id: integer (nullable = true)
|-- tagged: long (nullable = true)
|-- transactions: array (nullable = false)
| |-- element: struct (containsNull = true)
| | |-- mo_yr_buckt: string (nullable = false)
| | |-- acct_id: long (nullable = false)
| | |-- eff_dt: date (nullable = true)
| | |-- extn_txn_cd: string (nullable = true)
| | |-- mntr_txn_am: double (nullable = true)
| | |-- cr_dr_in: string (nullable = true)
| | |-- txn_desc_tx: string (nullable = true)
| | |-- txn_auth_dt: date (nullable = false)
| | |-- txn_auth_ts: string (nullable = false)
| | |-- tagged: long (nullable = true)
| | |-- firm_bnkg_id: integer (nullable = false)
| | |-- txn_pst_sq_nb: string (nullable = false)
| | |-- pst_dt: integer (nullable = false)
|-- prty_ol_prfl_id: long (nullable = true)
|-- prod_cd: string (nullable = true)
|-- acct_type_cd: string (nullable = true)
|-- acct_state_cd: string (nullable = true)
The IsValidUDF just checks the column tagged for certain values.
Any help would be appreciated.
Thanks
The translaton of your code to a spark sql statement is:
val new_df = spark.sql("""
WITH temp AS(
SELECT *, explode(transactions) AS txn FROM df
)
SELECT first(id) id, collect_list(txn) AS TRANSACTIONS FROM temp WHERE IsValidUDF(txn) = TRUE GROUP BY id
""")
(just replace first(id) with first(.) with every column you want to have in the resulting dataframe.
Beforehand make sur that your udf is registered:
spark.udf.register("IsValidUDF", is_valid_udf)
Here is the complete code with a toy example:
import org.apache.spark.sql.Row
// Toy example
val df = Seq((0, List(66,1) ),(1, List(98, 2)),(2, List(90))).toDF("id", "transactions")
df.createOrReplaceTempView("df")
val is_valid_udf = udf((r: Int) => r > 50)
// register udf
spark.udf.register("IsValidUDF", is_valid_udf)
// query
val new_df = spark.sql("""
WITH temp AS(
SELECT *, explode(transactions) AS txn FROM df
)
SELECT first(id) id, collect_list(txn) AS TRANSACTIONS FROM temp WHERE IsValidUDF(txn) = TRUE GROUP BY id
""")
Output:
+---+------------+
| id|TRANSACTIONS|
+---+------------+
| 1| [98]|
| 2| [90]|
| 0| [66]|
+---+------------+
which is the original dataframe with transactions > 50 removed.

Dropping nested column of Dataframe with PySpark

I'm trying to drop some nested columns from structs in a Spark dataframe using PySpark.
I found this for Scala that seems to be doing exactly what I want to, but I'm not familiar with Scala and don't know how to write it in Python.
https://stackoverflow.com/a/39943812/5706548
Example for pyspark:
def drop_col(df, struct_nm, delete_struct_child_col_nm):
fields_to_keep = filter(lambda x: x != delete_struct_child_col_nm, df.select("{}.*".format(struct_nm)).columns)
fields_to_keep = list(map(lambda x: "{}.{}".format(struct_nm, x), fields_to_keep))
return df.withColumn(struct_nm, struct(fields_to_keep))
A method that I found using pyspark is by first converting the nested column into json and then parse the converted json with a new nested schema with the unwanted columns filtered out.
Suppose I have the following schema and I want to drop d, e and j (a.b.d, a.e, a.h.j) from the dataframe:
root
|-- a: struct (nullable = true)
| |-- b: struct (nullable = true)
| | |-- c: long (nullable = true)
| | |-- d: string (nullable = true)
| |-- e: struct (nullable = true)
| | |-- f: long (nullable = true)
| | |-- g: string (nullable = true)
| |-- h: array (nullable = true)
| | |-- element: struct (containsNull = true)
| | | |-- i: string (nullable = true)
| | | |-- j: string (nullable = true)
|-- k: string (nullable = true)
I used the following approach:
Create new schema for a by excluding d, e and j. A quick way to do this is by manually select the fields that you want from df.select("a").schema and create a new schema from the selected fields using StructType. Or, you can do this programmatically by traversing the schema tree and exclude the unwanted fields, something like:
def exclude_nested_field(schema, unwanted_fields, parent=""):
new_schema = []
for field in schema:
full_field_name = field.name
if parent:
full_field_name = parent + "." + full_field_name
if full_field_name not in unwanted_fields:
if isinstance(field.dataType, StructType):
inner_schema = exclude_nested_field(field.dataType, unwanted_fields, full_field_name)
new_schema.append(StructField(field.name, inner_schema))
elif isinstance(field.dataType, ArrayType):
new_schema.append(StructField(field.name, ArrayType(field.dataType.elementType)))
else:
new_schema.append(StructField(field.name, field.dataType))
return StructType(new_schema)
new_schema = exclude_nested_field(df.schema["a"].dataType, ["b.d", "e", "h.j"])
Convert a column to json: .withColumn("json", F.to_json("a")).drop("a")
Parse the json-converted a column from step 2 with the new schema found in step 1: .withColumn("a", F.from_json("json", new_schema)).drop("json")
We can now do it natively with Spark version >= 3.1
https://spark.apache.org/docs/3.1.1/api/python/reference/api/pyspark.sql.Column.dropFields.html
Althoug I've no solution for PySpark, maybe it's easier to translate this into python. Consider a dataframe df with schema:
root
|-- employee: struct (nullable = false)
| |-- name: string (nullable = false)
| |-- age: integer (nullable = false)
Then if you want e.g. to drop name,
you can do:
val fieldsToKeep = df.select($"employee.*").columns
.filter(_!="name") // the nested column you want to drop
.map(n => "employee."+n)
// overwite column with subset of fields
df
.withColumn("employee",struct(fieldsToKeep.head,fieldsToKeep.tail:_*))
Having the below dataframe, the aim is to drop d, e and j.
from pyspark.sql import functions as F
df = spark.createDataFrame([], "a struct<b:struct<c:bigint,d:string>,e:struct<f:bigint,g:string>,h:array<struct<i:string,j:string>>>, k string")
df.printSchema()
# root
# |-- a: struct (nullable = true)
# | |-- b: struct (nullable = true)
# | | |-- c: long (nullable = true)
# | | |-- d: string (nullable = true) # <<--- to be dropped
# | |-- e: struct (nullable = true) # <<--- to be dropped
# | | |-- f: long (nullable = true)
# | | |-- g: string (nullable = true)
# | |-- h: array (nullable = true)
# | | |-- element: struct (containsNull = true)
# | | | |-- i: string (nullable = true)
# | | | |-- j: string (nullable = true) # <<--- to be dropped
# |-- k: string (nullable = true)
e is the easiest:
df = df.withColumn("a", F.col("a").dropFields("e"))
df.printSchema()
# root
# |-- a: struct (nullable = true)
# | |-- b: struct (nullable = true)
# | | |-- c: long (nullable = true)
# | | |-- d: string (nullable = true)
# | |-- h: array (nullable = true)
# | | |-- element: struct (containsNull = true)
# | | | |-- i: string (nullable = true)
# | | | |-- j: string (nullable = true)
# |-- k: string (nullable = true)
In order to drop d, we must go inside b:
df = df.withColumn("a", F.col("a").withField("b", F.col("a.b").dropFields("d")))
df.printSchema()
# root
# |-- a: struct (nullable = true)
# | |-- b: struct (nullable = true)
# | | |-- c: long (nullable = true)
# | |-- h: array (nullable = true)
# | | |-- element: struct (containsNull = true)
# | | | |-- i: string (nullable = true)
# | | | |-- j: string (nullable = true)
# |-- k: string (nullable = true)
j is inside array, so transform must also be used. It "loops" through every array's elements (in this case, the element is a struct) and transforms it (removes a field).
df = df.withColumn("a", F.col("a").withField(
"h",
F.transform(
F.col("a.h"),
lambda x: x.dropFields("j")
)
))
df.printSchema()
# root
# |-- a: struct (nullable = true)
# | |-- b: struct (nullable = true)
# | | |-- c: long (nullable = true)
# | |-- h: array (nullable = true)
# | | |-- element: struct (containsNull = true)
# | | | |-- i: string (nullable = true)
# |-- k: string (nullable = true)
Pyspark version of Raphaels Scala answer.
This runs at a certain depth, discards everything above that depth and filters on the row below it.
def remove_columns(df,root):
from pyspark.sql.functions import col
cols = df.select(root).columns
fields_filter = filter(lambda x: x[0]!= "$", cols) # use your own lambda here.
fieldsToKeep = list(map(lambda x: root[:-1] + x, fields_filter))
return df.select(fieldsToKeep)
df = remove_columns(raw_df, root="level1.level2.*")