Why Are Time Complexities Like O(N + N) Equal To O(N)? [duplicate] - time-complexity

This question already has answers here:
Why is the constant always dropped from big O analysis?
(7 answers)
Closed 2 years ago.
I commonly use a site called LeetCode for practice on problems. On a lot of answers in the discuss section of a problem, I noticed that run times like O(N + N) or O(2N) gets changed to O(N). For example:
int[] nums = {1, 2, 3, 4, 5};
for(int i = 0; i < nums.length; i ++) {
System.out.println(nums[i]);
}
for(int i = 0; i < nums.length; i ++) {
System.out.println(nums[i]);
}
This becomes O(N), even though it iterates through nums twice. Why is it not O(2N) or O(N + N)?

In time complexity, constant coefficients do not play a role. This is because the actual time it takes an algorithm to run depends also on the physical constraints of the machine. This means that if you run your code on a machine which is twice as fast as another, all other conditions being equal, it would run in about half the time with the same input.
But that’s not the same thing when you compare two algorithms with different time complexities. For example, when you compare the running time of an algorithm of O( N ^ 2 ) to an algorithm of O(N), the running time of O( N ^ 2 ) grows so fast with the growth of input size that the O(N) one cannot catch up with it, no matter how big you choose its constant coefficient.
Let’s say your constant coefficient is 1000, instead of just 2, then for input sizes of ( N > 1000 ) the running time of O( N ^ 2 ) algorithm becomes a proportion of ( N * N ) while N would be growing proportional to the input size, while the running time of the O(N) algorithm only remains proportional to ( 1000 * N ).

Time complexity for O(n+n) reduces to O(2n). Now 2 is a constant. So the time complexity will essentially depend on n.
Hence the time complexity of O(2n) equates to O(n).
Also if there is something like this O(2n + 3) it will still be O(n) as essentially the time will depend on the size of n.
Now suppose there is a code which is O(n^2 + n), it will be O(n^2) as when the value of n increases the effect of n will become less significant compared to effect of n^2.

Related

Not sure whether it's smaller or larger - Big O notation

Could one of you kindly to tell me whether it's smaller or bigger?
Is O(N * logK) bigger than O(N)? I think it is bigger because O(NlogN) is bigger than O(N), the linear one.
Yes, it should increase, unless for some reason K is always one, in which you wouldnt put the 'logK' in O(N*logK) and it would just be O(N) which is obv equal to O(N)
Think of it this way: What is O(N) and O(N*logK) saying?
Well O(N) is saying, for example, that you have something like an array with N elements in it. For each element you are doing an operation that takes constant time, ie adding a number to that element
While O(N*logK) is saying, not only do you need to do an operation for each element, you need to do an operation that takes logK time. Its important to note that K would denote something different than N in this case, for example you could have the array from the O(N) example plus another array with K elements. Heres a code example
public void SomeNLogKOperation(int[] nElements, int[] kElements){
//for each element in nElements, ie O(N)
for(int i = 0; i < nElements.length; i++){
//do operation that takes O(logK) time, now we have O(N*logK)
int val = operationThatTakesLogKTime(nElements[i], kElements)
}
}
public void SomeNOperation(int[] nElements){
//for each element in nElements, ie O(N)
for(int i = 0; i < nElements.length; i++){
//simple operation that takes O(1) time, so we have O(N*1) = O(N)
int val = nElements[i] + 1;
}
}
I absolutely missed you used log(K) in the expression - this answer is invalid if K is not dependent on N and more, less than 1. But the you use O NlogN in the next
sentence so lets go with N log N.
So for N = 1000 O(N) is exactly that.
O(NlogN) is logN more. Usually we are looking at a base 2 log, so O(NlogN) is about 10000.
The difference is not large but very measurable.
For N = 1,000,000
You have O(N) at 1 million
O(NlogN) would sit comfortably at 20 million.
It is helpful to know your logs to common values
8-bit max 255 => log 255 = 8
10 bit max 1024 => log 1024 = 10: Conclude log 1000 is very close to 10.
16 bit 65735 => log 65735 = 16
20 bits max 1024072 = 20 bits very close to 1 million.
This question is not asked in the context of algorithmic time complexity. Only math is required here.
So we are comparing too functions. It all depends on context. What do we know of N and K? If K and N are both free variables that tend to infinity, then yes, O(N * log k) is "bigger" than O(N), in the sense that
N = O(N * log k) but
N * log k ≠ O(N).
However, if K is some constant parameter > 0, then they are the same complexity class.
On the other hand, K could be 0 or negative, in which case we obtain different relationships. So you need to define/provide more context to be able to make this comparison.

Big O notation and measuring time according to it

Suppose we have an algorithm that is of order O(2^n). Furthermore, suppose we multiplied the input size n by 2 so now we have an input of size 2n. How is the time affected? Do we look at the problem as if the original time was 2^n and now it became 2^(2n) so the answer would be that the new time is the power of 2 of the previous time?
Big 0 is not for telling you the actual running time, just how the running time is affected by the size of input. If you double the size of input the complexity is still O(2^n), n is just bigger.
number of elements(n) units of work
1 1
2 4
3 8
4 16
5 32
... ...
10 1024
20 1048576
There's a misunderstanding here about how Big-O relates to execution time.
Consider the following formulas which define execution time:
f1(n) = 2^n + 5000n^2 + 12300
f2(n) = (500 * 2^n) + 6
f3(n) = 500n^2 + 25000n + 456000
f4(n) = 400000000
Each of these functions are O(2^n); that is, they can each be shown to be less than M * 2^n for an arbitrary M and starting n0 value. But obviously, the change in execution time you notice for doubling the size from n1 to 2 * n1 will vary wildly between them (not at all in the case of f4(n)). You cannot use Big-O analysis to determine effects on execution time. It only defines an upper boundary on the execution time (which is not even guaranteed to be the minimum form of the upper bound).
Some related academia below:
There are three notable bounding functions in this category:
O(f(n)): Big-O - This defines a upper-bound.
Ω(f(n)): Big-Omega - This defines a lower-bound.
Θ(f(n)): Big-Theta - This defines a tight-bound.
A given time function f(n) is Θ(g(n)) only if it is also Ω(g(n)) and O(g(n)) (that is, both upper and lower bounded).
You are dealing with Big-O, which is the usual "entry point" to the discussion; we will neglect the other two entirely.
Consider the definition from Wikipedia:
Let f and g be two functions defined on some subset of the real numbers. One writes:
f(x)=O(g(x)) as x tends to infinity
if and only if there is a positive constant M such that for all sufficiently large values of x, the absolute value of f(x) is at most M multiplied by the absolute value of g(x). That is, f(x) = O(g(x)) if and only if there exists a positive real number M and a real number x0 such that
|f(x)| <= M|g(x)| for all x > x0
Going from here, assume we have f1(n) = 2^n. If we were to compare that to f2(n) = 2^(2n) = 4^n, how would f1(n) and f2(n) relate to each other in Big-O terms?
Is 2^n <= M * 4^n for some arbitrary M and n0 value? Of course! Using M = 1 and n0 = 1, it is true. Thus, 2^n is upper-bounded by O(4^n).
Is 4^n <= M * 2^n for some arbitrary M and n0 value? This is where you run into problems... for no constant value of M can you make 2^n grow faster than 4^n as n gets arbitrarily large. Thus, 4^n is not upper-bounded by O(2^n).
See comments for further explanations, but indeed, this is just an example I came up with to help you grasp Big-O concept. That is not the actual algorithmic meaning.
Suppose you have an array, arr = [1, 2, 3, 4, 5].
An example of a O(1) operation would be directly access an index, such as arr[0] or arr[2].
An example of a O(n) operation would be a loop that could iterate through all your array, such as for elem in arr:.
n would be the size of your array. If your array is twice as big as the original array, n would also be twice as big. That's how variables work.
See Big-O Cheat Sheet for complementary informations.

How to calculate the time complexity?

Assume that function f is in the complexity class O(N (log N)2), and that for N = 1,000 the program runs in 8 seconds.
How to write a formula T(N) that can compute the approximate time that it takes to run f for any input of size N???
Here is the answer:
8 = c (1000 x 10)
c = 8x10^-4
T(N) = 8x10-4* (N log2 N)
I don't understand the first line where does the 10 come from?
Can anybody explain the answer to me please? Thanks!
I don't understand the first line where does the 10 come from? Can
anybody explain the answer to me please? Thanks!
T(N) is the maximum time complexity. c is the constant or O(1) time, which is the portion of the algorithm's speed which is not affected by the size of the input. The 10 comes from rounding to simplify the math. It's actually 9.965784, which is log2 of 1000, e.g.
N x log2 N is
1000 x 10 or
1000 x 9.965784
O(N (log N)^2) describes how the runtime scales with N, but it's not a formula for calculating runtime in seconds. In fact, Big-O notation doesn't generally give the exact scaling function itself, but an upper bound on it as N becomes large. See here (there's a nice picture showing this last point).
If you're interested in a function's runtime in practice (particularly in the non-asymptotic regime, i.e. small N), one option is to actually run the function and measure it. Do this for multiple values of N, chosen on some grid (possibly with nonlinear spacing). Then, you can interpolate between these points.
Define S(N)=N(log N)^2
If you can assume that S(N) bounds your program for all N >= 1000
Then you can bound your execution time by good'ol rule of three:
S(1000) - T(1000)
S(N) - T(N)
T(N) <= S(N)* T(1000)/S(1000) for all N >=1000
S(1000) approx 10E4
T(1000) = 8
T(N) <= N(log N)^2 * 8 / 10E4

Asymptotic complexity for typical expressions

The increasing order of following functions shown in the picture below in terms of asymptotic complexity is:
(A) f1(n); f4(n); f2(n); f3(n)
(B) f1(n); f2(n); f3(n); f4(n);
(C) f2(n); f1(n); f4(n); f3(n)
(D) f1(n); f2(n); f4(n); f3(n)
a)time complexity order for this easy question was given as--->(n^0.99)*(logn) < n ......how? log might be a slow growing function but it still grows faster than a constant
b)Consider function f1 suppose it is f1(n) = (n^1.0001)(logn) then what would be the answer?
whenever there is an expression which involves multiplication between logarithimic and polynomial expression , does the logarithmic function outweigh the polynomial expression?
c)How to check in such cases suppose
1)(n^2)logn vs (n^1.5) which has higher time complexity?
2) (n^1.5)logn vs (n^2) which has higher time complexity?
If we consider C_1 and C_2 such that C_1 < C_2, then we can say the following with certainty
(n^C_2)*log(n) grows faster than (n^C_1)
This is because
(n^C_1) grows slower than (n^C_2) (obviously)
also, for values of n larger than 2 (for log in base 2), log(n) grows faster than
1.
in fact, log(n) is asymptotically greater than any constant C,
because log(n) -> inf as n -> inf
if both (n^C_2) is asymptotically than (n^C_1) AND log(n) is asymptotically greater
than 1, then we can certainly say that
(n^2)log(n) has greater complexity than (n^1.5)
We think of log(n) as a "slowly growing" function, but it still grows faster than 1, which is the key here.
coder101 asked an interesting question in the comments, essentially,
is n^e = Ω((n^c)*log_d(n))?
where e = c + ϵ for arbitrarily small ϵ
Let's do some algebra.
n^e = (n^c)*(n^ϵ)
so the question boils down to
is n^ϵ = Ω(log_d(n))
or is it the other way around, namely:
is log_d(n) = Ω(n^ϵ)
In order to do this, let us find the value of ϵ that satisfies n^ϵ > log_d(n).
n^ϵ > log_d(n)
ϵ*ln(n) > ln(log_d(n))
ϵ > ln(log_d(n)) / ln(n)
Because we know for a fact that
ln(n) * c > ln(ln(n)) (1)
as n -> infinity
We can say that, for an arbitrarily small ϵ, there exists an n large enough to
satisfy ϵ > ln(log_d(n)) / ln(n)
because, by (1), ln(log_d(n)) / ln(n) ---> 0 as n -> infinity.
With this knowledge, we can say that
is n^ϵ = Ω(log_d(n))
for arbitrarily small ϵ
which means that
n^(c + ϵ) = Ω((n^c)*log_d(n))
for arbitrarily small ϵ.
in layperson's terms
n^1.1 > n * ln(n)
for some n
also
n ^ 1.001 > n * ln(n)
for some much, much bigger n
and even
n ^ 1.0000000000000001 > n * ln(n)
for some very very big n.
Replacing f1 = (n^0.9999)(logn) by f1 = (n^1.0001)(logn) will yield answer (C): n, (n^1.0001)(logn), n^2, 1.00001^n
The reasoning is as follows:
. (n^1.0001)(logn) has higher complexity than n, obvious.
. n^2 higher than (n^1.0001)(logn) because the polynomial part asymptotically dominates the logarithmic part, so the higher-degree polynomial n^2 wins
. 1.00001^n dominates n^2 because the 1.00001^n has exponential growth, while n^2 has polynomial growth. Exponential growth asymptotically wins.
BTW, 1.00001^n looks a little similar to a family called "sub-exponential" growth, usually denoted (1+Ɛ)^n. Still, whatever small is Ɛ, sub-exponential growth still dominates any polynomial growth.
The complexity of this problem lays between f1(n) and f2(n).
For f(n) = n ^ c where 0 < c < 1, the curve growth will eventually be so slow that it would become so trivial compared with a linear growth curve.
For f(n) = logc(n), where c > 1, the curve growth will eventually be so slow that it would become so trivial compared with a linear growth curve.
The product of such two functions will also eventually become trivial compared with a linear growth curve.
Hence, Theta(n ^ c * logc(n)) is asymptotically less complex than Theta(n).

Total time complexity when each step takes O(log n) operations

Consider a tree where the cost of an insertion is in O(log n). Say you start from an empty tree and add N elements iteratively. We want to know the total time complexity. I did this:
nb of operations in iteration i = log i
nb of operations in all iterations from 1 to N = log 1 + log 2 + ... + log N = log( N! )
total complexity = O(N!) ~ O(N log N)
(cf the Stirling approximation http://en.wikipedia.org/wiki/Stirling%27s_approximation )
Is this correct?
Yes, it's nearly correct.
A small correction: in the ith step, the number of operations is not log i, as most of the time that's an irrational number, it's O(log i). So for a mathematically tight proof you have to work a bit harder, but in short, what you wrote is the essence of the proof.