React Native Animated Add Interpolate - react-native

I have a React Native Animated.view component whose opacity I would like to interpolate based on the scrollview position. However, I want to interpolate the opacity using two values (x and y) instead of one.
this.nextCardOpacityX = this.position.x.interpolate({
inputRange: [-SCREEN_WIDTH / 2, 0, SCREEN_WIDTH / 2],
outputRange: [1, 0, 1],
extrapolate: 'clamp',
});
this.nextCardOpacityY = this.position.y.interpolate({
inputRange: [-SCREEN_HEIGHT / 2 + 100, 0, SCREEN_HEIGHT / 2 - 100],
outputRange: [1, 0, 0],
extrapolate: 'clamp'
});
styles.opacity = {
opacity: this.nextCardOpacityY > this.nextCardOpacityX ? this.nextCardOpacityY : this.nextCardOpacityX,
}
This doesn't work of course because the nextCartOpacityY only affects, but it makes clear what I want to achieve.
I think it can be done with Animated.add, but I am not sure how I can use add with interpolate

Related

Why is this simple Deck.GL OrbitView not interactive?

I think I'm doing something very basic wrong, or I'm misunderstanding something very fundamental, but I just can't make this respond to mouse events – it's just frozen in its initial view (Code Pen sample):
const {Deck, OrbitView, SimpleMeshLayer, COORDINATE_SYSTEM} = deck;
const {CubeGeometry} = luma;
const view = {
target: [0, 0, 0],
zoom: 0,
rotationOrbit: 145,
rotationX: 65,
minRotationX: -90,
maxRotationX: 90,
minZoom: -10,
maxZoom: 10
}
deck = new Deck({
views: new OrbitView({
orbitAxis: "Y"
}),
layers: [
new SimpleMeshLayer({
initialViewState: view,
controller: true,
data: [
{
position: [-25, 0, 0],
color: [255, 0, 0]
},
{
position: [25, 0, 0],
color: [0, 255, 0]
}
],
coordinateSystem: COORDINATE_SYSTEM.CARTESIAN,
mesh: new CubeGeometry(),
getPosition: d => d.position,
getColor: d => d.color,
getScale: [20, 20, 20]
})
]
});
Fixed it. I was confused about which properties go where. I left the buggy code here, and fixed it in the Pen, if you want to compare before and after.

Cleaning up labeled image with mouse clicks (numpy, matplotlib)

I have an image that has been segmented and labeled, and I'd now like to clean up the labeled image by clicking on labels that I'd like to delete.
So far I can read the coordinates and select the label that I want to delete, but I'm unsure how to update the plot.
Right now the script makes a new window with each click, and only allows me to delete one label.
Any help is much appreciated,
Thanks
import numpy as np
import matplotlib.pyplot as plt
im = np.array([
[0, 0, 0, 0, 0, 1, 0],
[2, 2, 2, 0, 1, 1, 0],
[0, 2, 2, 0, 1, 1, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 3, 3, 0, 0, 4, 0],
[0, 3, 3, 0, 4, 4, 0],
[0, 3, 0, 0, 0, 4, 0]
])
fig, axes = plt.subplots()
axes.imshow(im)
def onclick(event):
global im
row, col = (int(event.ydata + 0.5)), (int(event.xdata + 0.5))
print(row, col)
label_to_delete = im[row, col]
im = np.where(im == label_to_delete, 0, im)
fig, axes = plt.subplots()
axes.imshow(im)
cid = fig.canvas.mpl_connect('button_press_event', onclick)
First of all, you don't need making a new figure and axes every event. Secondly, you need to call pause.
fig, axes = plt.subplots()
axes.imshow(im)
def onclick(event):
global im
row, col = (int(event.ydata + 0.5)), (int(event.xdata + 0.5))
print(row, col)
label_to_delete = im[row, col]
im = np.where(im == label_to_delete, 0, im)
axes.imshow(im)
plt.pause(0.05)
cid = fig.canvas.mpl_connect('button_press_event', onclick)
plt.show()

ReactNative interpolate equivalent in Flutter

Suppose I want to animate the radius(r) of a circle as following:
10 --- 20 --- 40 --- 10
In React Native, I can animate by
r.interpolate({
inputRange: [0, 0.33, 0.66, 1],
outputRange: [10, 20, 40, 10],
});
In Flutter, I have to
Tween<double>(10,20)
.animate(parent: controller,
curve: Interval(
0,
0.33,
curve: Curves.easeInOutBack,
),
),
)
Tween<double>(20,40)
.animate(parent: ...,
curve: Interval(
0.33
0.66,
curve: ...
),
),
)
Tween<double>(40,10)
.animate(parent: ...,
curve: Interval(
0.66,
1.0,
curve: ...
),
),
)
Is the above the correct way to achieve it in Flutter? By correct I mean more idiomatically speaking.

Rendering a cube in Vulkan vs OpenGL

I wrote a simple OpenGL program which merely renders a cube from an angle. It's as simple as you can get: vertex buffer only (no index buffer), a vertex shader which only multiplies the vertices by an MVP matrix from a uniform buffer, and a static fragment shader which just returns red. More recently, I have tried writing this same program in Vulkan, but I have run into some issues.
I started by following the Intel API without secrets tutorial to setup a simple 2d texture rendering program, but when I took the leap into 3d, I started having issues. In order to debug this, I simplified the program to match my older OpenGL program (removed texturing and some other extra stuff I did in Vulkan), and even went as far as to use the exact same vertex and MVP data. However, I just can't get the cube to render correctly in Vulkan.
I am aware that OpenGL coordinates do not map directly to Vulkan coordinates, as the Y coordinate is flipped, but if anything that should just flip the image upside down, and I already tried switching the Y values in the MVP. I feel like there is some other detail I am missing here with coordinates, but I just can't figure it out searching around and looking at guides about converting OpenGL code bases to Vulkan.
I'm including the data I am uploading to the shaders, and some of the core code from the Vulkan code base. The Vulkan code is in D, so it's similar to C++, but a little different. With the library I'm using for wrapping Vulkan (erupted), the device level functions are loaded into a device dispatch (access as device.dispatch in the code), and when they are called on the dispatch without the vk prefix, the device and command buffer (which is assigned to the dispatch in code) arguments of the function are auto populated.
Vertex Data:
[ [1, 1, 1, 1],
[1, 1, -1, 1],
[-1, 1, -1, 1],
[1, 1, 1, 1],
[-1, 1, -1, 1],
[-1, 1, 1, 1],
[1, 1, 1, 1],
[1, -1, 1, 1],
[1, -1, -1, 1],
[1, 1, 1, 1],
[1, -1, -1, 1],
[1, 1, -1, 1],
[1, 1, -1, 1],
[1, -1, -1, 1],
[-1, -1, -1, 1],
[1, 1, -1, 1],
[-1, -1, -1, 1],
[-1, 1, -1, 1],
[-1, 1, -1, 1],
[-1, -1, -1, 1],
[-1, -1, 1, 1],
[-1, 1, -1, 1],
[-1, -1, 1, 1],
[-1, 1, 1, 1],
[-1, 1, 1, 1],
[-1, -1, 1, 1],
[1, -1, 1, 1],
[-1, 1, 1, 1],
[1, -1, 1, 1],
[1, 1, 1, 1],
[1, -1, 1, 1],
[1, -1, -1, 1],
[-1, -1, -1, 1],
[1, -1, 1, 1],
[-1, -1, -1, 1],
[-1, -1, 1, 1] ]
MVP:
[ [-1.0864, -0.993682, -0.687368, -0.685994],
[0, 2.07017, 0.515526, -0.514496],
[-1.44853, 0.745262, 0.515526, 0.514496],
[-8.04095e-16, 0, 5.64243, 5.83095] ]
Graphics Pipeline Setup:
VkPipelineShaderStageCreateInfo[] shader_stage_infos = [
{
stage: VK_SHADER_STAGE_VERTEX_BIT,
_module: vertex_shader,
pName: "main"
},
{
stage: VK_SHADER_STAGE_FRAGMENT_BIT,
_module: fragment_shader,
pName: "main"
}
];
VkVertexInputBindingDescription[] vertex_binding_descriptions = [
{
binding: 0,
stride: VertexData.sizeof,
inputRate: VK_VERTEX_INPUT_RATE_VERTEX
}
];
VkVertexInputAttributeDescription[] vertex_attribute_descriptions = [
{
location: 0,
binding: vertex_binding_descriptions[0].binding,
format: VK_FORMAT_R32G32B32A32_SFLOAT,
offset: VertexData.x.offsetof
},
{
location: 1,
binding: vertex_binding_descriptions[0].binding,
format: VK_FORMAT_R32G32_SFLOAT,
offset: VertexData.u.offsetof
}
];
VkPipelineVertexInputStateCreateInfo vertex_input_state_info = {
vertexBindingDescriptionCount: vertex_binding_descriptions.length.to!uint,
pVertexBindingDescriptions: vertex_binding_descriptions.ptr,
vertexAttributeDescriptionCount: vertex_attribute_descriptions.length.to!uint,
pVertexAttributeDescriptions: vertex_attribute_descriptions.ptr
};
VkPipelineInputAssemblyStateCreateInfo input_assembly_state_info = {
topology: VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
primitiveRestartEnable: VK_FALSE
};
VkPipelineViewportStateCreateInfo viewport_state_info = {
viewportCount: 1,
pViewports: null,
scissorCount: 1,
pScissors: null
};
VkPipelineRasterizationStateCreateInfo rasterization_state_info = {
depthBiasClamp: 0.0,
polygonMode: VK_POLYGON_MODE_FILL,
cullMode: VK_CULL_MODE_FRONT_AND_BACK,
frontFace: VK_FRONT_FACE_COUNTER_CLOCKWISE,
lineWidth: 1
};
VkPipelineMultisampleStateCreateInfo multisample_state_info = {
rasterizationSamples: VK_SAMPLE_COUNT_1_BIT,
minSampleShading: 1
};
VkPipelineColorBlendAttachmentState[] color_blend_attachment_states = [
{
blendEnable: VK_FALSE,
srcColorBlendFactor: VK_BLEND_FACTOR_ONE,
dstColorBlendFactor: VK_BLEND_FACTOR_ZERO,
colorBlendOp: VK_BLEND_OP_ADD,
srcAlphaBlendFactor: VK_BLEND_FACTOR_ONE,
dstAlphaBlendFactor: VK_BLEND_FACTOR_ZERO,
alphaBlendOp: VK_BLEND_OP_ADD,
colorWriteMask:
VK_COLOR_COMPONENT_R_BIT |
VK_COLOR_COMPONENT_G_BIT |
VK_COLOR_COMPONENT_B_BIT |
VK_COLOR_COMPONENT_A_BIT
}
];
VkPipelineColorBlendStateCreateInfo color_blend_state_info = {
logicOpEnable: VK_FALSE,
logicOp: VK_LOGIC_OP_COPY,
attachmentCount: color_blend_attachment_states.length.to!uint,
pAttachments: color_blend_attachment_states.ptr,
blendConstants: [ 0, 0, 0, 0 ]
};
VkDynamicState[] dynamic_states = [
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR
];
VkPipelineDynamicStateCreateInfo dynamic_state_info = {
dynamicStateCount: dynamic_states.length.to!uint,
pDynamicStates: dynamic_states.ptr
};
VkGraphicsPipelineCreateInfo pipeline_info = {
stageCount: shader_stage_infos.length.to!uint,
pStages: shader_stage_infos.ptr,
pVertexInputState: &vertex_input_state_info,
pInputAssemblyState: &input_assembly_state_info,
pTessellationState: null,
pViewportState: &viewport_state_info,
pRasterizationState: &rasterization_state_info,
pMultisampleState: &multisample_state_info,
pDepthStencilState: null,
pColorBlendState: &color_blend_state_info,
pDynamicState: &dynamic_state_info,
layout: pipeline_layout,
renderPass: render_pass,
subpass: 0,
basePipelineHandle: VK_NULL_HANDLE,
basePipelineIndex: -1
};
VkPipeline[1] pipelines;
checkVk(device.dispatch.CreateGraphicsPipelines(VK_NULL_HANDLE, 1, [pipeline_info].ptr, pipelines.ptr));
pipeline = pipelines[0];
Drawing:
if(device.dispatch.WaitForFences(1, [fence].ptr, VK_FALSE, 1000000000) != VK_SUCCESS)
throw new StringException("timed out waiting for fence");
device.dispatch.ResetFences(1, [fence].ptr);
uint image_index;
switch(device.dispatch.AcquireNextImageKHR(swapchain.swapchain, uint64_t.max, image_available_semaphore, VK_NULL_HANDLE, &image_index)) {
case VK_SUCCESS:
case VK_SUBOPTIMAL_KHR:
break;
case VK_ERROR_OUT_OF_DATE_KHR:
on_window_size_changed();
break;
default:
throw new StringException("unhandled vk result on swapchain image acquisition");
}
if(framebuffer != VK_NULL_HANDLE) device.dispatch.DestroyFramebuffer(framebuffer);
VkFramebufferCreateInfo framebuffer_info = {
renderPass: swapchain.render_pass,
attachmentCount: 1,
pAttachments: [swapchain.image_resources[image_index].image_view].ptr,
width: swapchain.extent.width,
height: swapchain.extent.height,
layers: 1
};
checkVk(device.dispatch.CreateFramebuffer(&framebuffer_info, &framebuffer));
VkCommandBufferBeginInfo cmd_begin_info = { flags: VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT };
VkImageSubresourceRange image_subresource_range = {
aspectMask: VK_IMAGE_ASPECT_COLOR_BIT,
baseMipLevel: 0,
levelCount: 1,
baseArrayLayer: 0,
layerCount: 1,
};
VkImageMemoryBarrier barrier_from_present_to_draw = {
srcAccessMask: VK_ACCESS_MEMORY_READ_BIT,
dstAccessMask: VK_ACCESS_MEMORY_READ_BIT,
oldLayout: VK_IMAGE_LAYOUT_PRESENT_SRC_KHR,
newLayout: VK_IMAGE_LAYOUT_PRESENT_SRC_KHR,
srcQueueFamilyIndex: device.present_queue.family_index,
dstQueueFamilyIndex: device.graphics_queue.family_index,
image: swapchain.image_resources[image_index].image,
subresourceRange: image_subresource_range
};
VkImageMemoryBarrier barrier_from_draw_to_present = {
srcAccessMask: VK_ACCESS_MEMORY_READ_BIT,
dstAccessMask: VK_ACCESS_MEMORY_READ_BIT,
oldLayout: VK_IMAGE_LAYOUT_PRESENT_SRC_KHR,
newLayout: VK_IMAGE_LAYOUT_PRESENT_SRC_KHR,
srcQueueFamilyIndex: device.graphics_queue.family_index,
dstQueueFamilyIndex: device.present_queue.family_index,
image: swapchain.image_resources[image_index].image,
subresourceRange: image_subresource_range
};
VkViewport viewport = {
x: 0,
y: 0,
width: swapchain.extent.width,
height: swapchain.extent.height,
minDepth: 0,
maxDepth: 1
};
VkRect2D scissor = {
offset: {
x: 0,
y: 0
},
extent: swapchain.extent
};
VkClearValue[] clear_values = [
{ color: { [ 1.0, 0.8, 0.4, 0.0 ] } }
];
VkRenderPassBeginInfo render_pass_begin_info = {
renderPass: swapchain.render_pass,
framebuffer: framebuffer,
renderArea: {
offset: {
x: 0,
y: 0
},
extent: swapchain.extent
},
clearValueCount: clear_values.length.to!uint,
pClearValues: clear_values.ptr
};
device.dispatch.commandBuffer = command_buffer;
device.dispatch.BeginCommandBuffer(&cmd_begin_info);
if(device.graphics_queue.handle != device.present_queue.handle)
device.dispatch.CmdPipelineBarrier(
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
0, 0, null, 0, null, 1,
&barrier_from_present_to_draw
);
device.dispatch.CmdBeginRenderPass(&render_pass_begin_info, VK_SUBPASS_CONTENTS_INLINE);
device.dispatch.CmdBindPipeline(VK_PIPELINE_BIND_POINT_GRAPHICS, swapchain.pipeline);
device.dispatch.CmdSetViewport(0, 1, &viewport);
device.dispatch.CmdSetScissor(0, 1, &scissor);
const(ulong) vertex_buffer_offset = 0;
device.dispatch.CmdBindVertexBuffers(0, 1, &vertex_buffer, &vertex_buffer_offset);
device.dispatch.CmdBindDescriptorSets(VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline_layout, 0, 1, &descriptor_set, 0, null);
device.dispatch.CmdDraw(draw_count, 1, 0, 0);
device.dispatch.CmdEndRenderPass();
if(device.graphics_queue.handle != device.present_queue.handle)
device.dispatch.CmdPipelineBarrier(
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
0, 0, null, 0, null, 1,
&barrier_from_draw_to_present
);
checkVk(device.dispatch.EndCommandBuffer());
device.dispatch.commandBuffer = VK_NULL_HANDLE;
VkSubmitInfo submit_info = {
waitSemaphoreCount: 1,
pWaitSemaphores: [image_available_semaphore].ptr,
pWaitDstStageMask: castFrom!(VkPipelineStageFlagBits*).to!(const(uint)*)([VK_PIPELINE_STAGE_TRANSFER_BIT].ptr),
commandBufferCount: 1,
pCommandBuffers: [command_buffer].ptr,
signalSemaphoreCount: 1,
pSignalSemaphores: [rendering_finished_semaphore].ptr
};
checkVk(device.dispatch.vkQueueSubmit(device.graphics_queue.handle, 1, [submit_info].ptr, fence));
VkPresentInfoKHR present_info = {
waitSemaphoreCount: 1,
pWaitSemaphores: [rendering_finished_semaphore].ptr,
swapchainCount: 1,
pSwapchains: [swapchain.swapchain].ptr,
pImageIndices: [image_index].ptr
};
switch(device.dispatch.vkQueuePresentKHR(device.present_queue.handle, &present_info)) {
case VK_SUCCESS:
break;
case VK_ERROR_OUT_OF_DATE_KHR:
case VK_SUBOPTIMAL_KHR:
on_window_size_changed();
break;
default:
throw new StringException("unhandled vk result on presentation");
}
(I can't embed the images because my rep is too low, sorry)
Program Outputs:
OpenGL draws the cube as expected
OpenGL Output
Vulkan does not render anything except for the clear color.
UPDATE:
After fixing the cull mode by changing it to VK_CULL_MODE_NONE, this is the result I get:
Output after cull mode fix
VK_CULL_MODE_FRONT_AND_BACK
I think this is your problem :)
After cull mode fix, seems that your problem in your vertex data layout. Vulkan expects (accordingly to your layout binding) something like
struct Vertex {
vec4 x;
vec2 u;
};
Vertex VertexData[] = {...};
because you set VK_VERTEX_INPUT_RATE_VERTEX in your vertex_binding_descriptions.inputRate field.
And it seems that in your case you should set VK_VERTEX_INPUT_RATE_INSTANCE instead to work with buffers after each other.
Fix: Have seen your new comment, it looks like i misunderstood your vertices layout, so it won't help.

Lazy High Charts: change colors of a pie chart [rails 3]

I'm working in a rails 3 project, I want to change the pie chart colors that I generate with the LazyHighChart gem and I don;t know how to do that
This is my method controller
def set_pie_chart(data)
fixed_data = []
data.each_pair do |key, value|
fixed_data << [key.name, value]
end
#color = data.keys.map {|e| "#" + e.colour } # e.colour is like '333333'
#chart = LazyHighCharts::HighChart.new('pie') do |c|
c.chart({:defaultSeriesType=>"pie" , :margin=> [0, 0, 0, 0]})
series = {
type: 'pie',
name: 'total expenses',
data: fixed_data,
colors: ['green','red'] # intent
}
c.series(series)
c.colors = ['red','blue','black'] # intent
c.options[:colors] = ['green','blue','yellow'] # intent
c.options['colors'] = ['red','blue','yellow'] # intent
c.options[:title][:text] = nil
c.plot_options(:pie=>{
cursor: "pointer",
center: ['50%','37%'],
color: 'red', #intent
dataLabels: { enabled: false }
})
end
end
this method doesn't leave any error, what is the correct way or its not possible with this gem?
or what other good alternative gems could I use for my project?
I had the same problem and I solved it by putting the color options in my view. This is what I did:
#my_view_helper.rb
def chart_colors
html =
"[{linearGradient: [0, 0, 0, 200], stops: [[0, '#e28b02'],[1, '#f1bc70']]},
{linearGradient: [0, 0, 0, 200], stops: [[0, '#a5ba57'],[1, '#a8bb51']]},
{linearGradient: [0, 0, 0, 200], stops: [[0, '#1e93d6'],[1, '#35aff6']]},
{linearGradient: [0, 0, 0, 200], stops: [[0, '#c8cf99'],[1, '#cdcfa9']]},
{linearGradient: [0, 0, 0, 200], stops: [[0, '#709ab1'],[1, '#a7c5d0']]},
{linearGradient: [0, 0, 0, 200], stops: [[0, '#c76f4e'],[1, '#fba98e']]},
{linearGradient: [0, 0, 0, 200], stops: [[0, '#95d6e3'],[1, '#bbe8ed']]}]"
html
end
#my_view.html.haml
#chart
= high_chart("pie_1", #chart) do |c|
= "options.colors = #{chart_colors}".html_safe
#chart = LazyHighCharts::HighChart.new('pie') do |c|
c.colors(["red","green","blue"]);
end