So, looking for advice on how to fix a situation or maybe a better way to program it.
I'm using iteration to build a complicated string from key:value pairs in an unordered_map. To make this work, I'm iterating through the map to find specific items, then sending a search term to an outside function to create the string. The outside function uses its own iterator to search the same unordered_map for the passed search term, then creates the string, then erases the entries that it referenced. The problem, I believe, is that although the outside function's iterator is still valid because it called the erase function, the iterators in the main function are now invalidated and throwing an out of range error. Is there a way to reset the iterators or send them to the next valid key:value pair when they become invalidated in order to avoid the error?
The code is a mess (mostly because I'm still discovering C++) and it might be possible to use recursion to accomplish this, but I wasn't able to get recursion to work correctly.
I can post the code, but without understanding the inputs and required outputs, it's likely not going to help explain anything, so for now, I'll just leave the question as-is: is there a way to "re-validate" invalidated iterators?
I was able to resolve the issue by redefining each of the iterators once the scope of control returned back to them. For the last iterator (in the outside function) that deleted individual key:value pairs from the unordered_map, I used:
if (it != map.end()) it = map.erase(it);
This forces the iterator to move to the next valid key:value pair after the erasure.
That worked for the end of the line, but didn't work once control was returned to each of the previous iterators. In those case, the iterators were invalidated when the outside function erased a key:value pair. So as control returned to an iterator, I included the following line before it looped back for increment:
if (it != map.end()) it = map.begin();
It seems to have resolved all of the issues, though I'm sure there's a better way to handle it.
Related
I want to build a class in Raku. Here's what I have so far:
unit class Vimwiki::File;
has Str:D $.path is required where *.IO.e;
method size {
return $.file.IO.s;
}
I'd like to get rid of the size method by simply making my class inherit the methods from IO::Path but I'm at a bit of a loss for how to accomplish this. Trying is IO::Path throws errors when I try to create a new object:
$vwf = Vimwiki::File.new(path => 't/test_file.md');
Must specify a non-empty string as a path
in block <unit> at t/01-basic.rakutest line 24
Must specify a non-empty string as a path
I always try a person's code when looking at someone's SO. Yours didn't work. (No declaration of $vwf.) That instantly alerts me that someone hasn't applied Minimal Reproducible Example principles.
So I did and less than 60 seconds later:
IO::Path.new
Yields the same error.
Why?
The doc for IO::Path.new shows its signature:
multi method new(Str:D $path, ...
So, IO::Path's new method expects a positional argument that's a Str. You (and my MRE) haven't passed a positional argument that's a Str. Thus the error message.
Of course, you've declared your own attribute $path, and have passed a named argument to set it, and that's unfortunately confused you because of the coincidence with the name path, but that's the fun of programming.
What next, take #1
Having a path attribute that duplicates IO::Path's strikes me as likely to lead to unnecessary complexity and/or bugs. So I think I'd nix that.
If all you're trying to do is wrap an additional check around the filename, then you could just write:
unit class Vimwiki::File is IO::Path;
method new ($path, |) { $path.IO.e ?? (callsame) !! die 'nope' }
callsame redispatches the ongoing routine call (the new method call), with the exact same arguments, to the next best fitting candidate(s) that would have been chosen if your new one containing the callsame hadn't been called. In this case, the next candidate(s) will be the existing new method(s) of IO::Path.
That seems fine to get started. Then you can add other attributes and methods as you see fit...
What next, take #2
...except for the IO::Path bug you filed, which means you can't initialize attributes in the normal way because IO::Path breaks the standard object construction protocol! :(
Liz shows one way to workaround this bug.
In an earlier version of this answer, I had not only showed but recommended another approach, namely delegation via handles instead of ordinary inheritance. I have since concluded that that was over-complicating things, and so removed it from this answer. And then I read your issue!
So I guess the delegation approach might still be appropriate as a workaround for a bug. So if later readers want to see it in action, follow #sdondley's link to their code. But I'm leaving it out of this (hopefully final! famous last words...) version of this answer in the hope that by the time you (later reader) read this, you just need to do something really simple like take #1.
It is quite clear to me that iterating over a vector shouldn't let the loop body mutate the vector arbitrarily. This prevents iterator invalidation, which is prone to bugs.
However, not all kinds of mutation lead to iterator invalidation. See the following example:
let mut my_vec: Vec<Vec<i32>> = vec![vec![1,2], vec![3,4], vec![5,6]];
for inner in my_vec.iter_mut() { // <- or .iter()
// ...
my_vec[some_index].push(inner[0]); // <-- ERROR
}
Such a mutation does not invalidate the iterator of my_vec, however it is disallowed. It could invalidate any references to the specific elements in my_vec[some_index] but we do not use any such references anyway.
I know that these questions are common, and I'm not asking for an explanation. I am looking for a way to refactor this so that I can get rid of this loop. In my actual code I have a huge loop body and I can't modularize it unless I express this bit nicely.
What I have thought of so far:
Wrapping the vector with Rc<RefCell<...>>. I think this would still fail at runtime, since the RefCell would be borrowed by the iterator and then will fail when the loop body tries to borrow it.
Using a temporary vector to accumulate the future pushes, and push them after the loop ends. This is okay, but needs more allocations than pushing them on the fly.
Unsafe code, and messing with pointers.
Anything listed in the Iterator documentation does not help. I checked out itertools and it looks like it wouldn't help either.
Using a while loop and indexing instead of using an iterator making use of a reference to the outer vector. This is okay, but does not let me use iterators and adapters. I just want to get rid of this outer loop and use my_vec.foreach(...).
Are there any idioms or any libraries which would let me do this nicely Unsafe functions would be okay as long as they don't expose pointers to me.
You can wrap each of the inner vectors in a RefCell.
use std::cell::RefCell;
fn main() {
let my_vec : Vec<RefCell<Vec<i32>>> = vec![
RefCell::new(vec![1,2]),
RefCell::new(vec![3,4]),
RefCell::new(vec![5,6])];
for inner in my_vec.iter() {
// ...
let value = inner.borrow()[0];
my_vec[some_index].borrow_mut().push(value);
}
}
Note that the value binding here is important if you need to be able to push to the vector that inner refers to. value happens to be a type that doesn't contain references (it's i32), so it doesn't keep the first borrow active (it ends by the end of the statement). Then, the next statement may borrow the same vector or another vector mutably and it'll work.
If we wrote my_vec[some_index].borrow_mut().push(inner.borrow()[0]); instead, then both borrows would be active until the end of the statement. If both my_vec[some_index] and inner refer to the same RefCell<Vec<i32>>, this will panic with RefCell<T> already mutably borrowed.
Without changing the type of my_vec, you could simply use access by indexing and split_at_mut:
for index in 0..my_vec.len() {
let (first, second) = my_vec.split_at_mut(index);
first[some_index].push(second[0]);
}
Note: beware, the indices in second are off by index.
This is safe, relatively easy, and very flexible. It does not, however, work with iterator adaptors.
What is the difference between these two lines?
Set MyMsg = MyMsg.Move(MyFolder2)
MyMsg.Move(MyFolder2)
The first one works just fine.
The second one usually gives an "Outlook is not responding" error.
The MailItem.Move method returns the MailItem that has been moved. Usually, properties return values and methods don't return anything. But for several methods, the designers decided it would be handy to have a return value, so they made them return a value (or object).
When you assign a method to a variable, any arguments must be in parentheses or you'll get a syntax error. If you call a method without assigning it to a variable (because you don't care what the method returns or it's one of the methods that doesn't return a value), then the arguments must not be in parentheses (kind of).
Parentheses, when used in places that the compiler does not require them, are the equivalent of saying "evaluate this before doing anything else". It's like how you use parentheses in order of operations so you can say "evaluate this addition operation before you do this multiplication even though that's not the normal order".
The (kind of) remark above is because most of the time when you "incorrectly" put parentheses around something, it doesn't matter.
Application.CreateItem 0
and
Application.CreateItem (0)
are the same. The second one evaluates the argument before it passes it to CreateItem, but evaluating a single integer takes no time and has no ill effects. The parentheses aren't necessary because we're not assigning the results to a variable, but they're not really hurting anything either.
In your second example, you're telling the compiler to evaluate the folder, then send it to the Move method. I don't know what evaluating a folder means, but I gather it's not good. It probably does something like create an array of all the objects in that folder, or something equally intensive. When Outlook is not responding, it means you gave it such a big job that it hasn't checked back in with the operating system in a timely fashion.
So: Use parentheses for arguments when it's on the right side of an equal sign. Don't use them when it's not. There are a few exceptions to that rule, but you may never need to know them.
There is no difference between the two (you just ignore the function result) unless you actually use the MyMsg variable afterwards - after the message is moved, you cannot access it anymore.
Use the first version.
I've made a large program that opens and closes files and databases, perform writes and reads on them etc among other things. Since there no such thing as "exception handling in go", and since I didn't really know about "defer" statement and "recover()" function, I applied error checking after every file-open, read-write, database entry etc. E.g.
_,insert_err := stmt.Run(query)
if insert_err != nil{
mylogs.Error(insert_err.Error())
return db_updation_status
}
For this, I define db_updation_status at the beginning as "false" and do not make it "true" until everything in the program goes right.
I've done this in every function, after every operation which I believe could go wrong.
Do you think there's a better way to do this using defer-panic-recover? I read about these here http://golang.org/doc/articles/defer_panic_recover.html, but can't clearly get how to use them. Do these constructs offer something similar to exception-handling? Am I better off without these constructs?
I would really appreciate if someone could explain this to me in a simple language, and/or provide a use case for these constructs and compare them to the type of error handling I've used above.
It's more handy to return error values - they can carry more information (advantage to the client/user) than a two valued bool.
What concerns panic/recover: There are scenarios where their use is completely sane. For example, in a hand written recursive descent parser, it's quite a PITA to "bubble" up an error condition through all the invocation levels. In this example, it's a welcome simplification if there's a deferred recover at the top most (API) level and one can report any kind of error at any invocation level using, for example
panic(fmt.Errorf("Cannot %v in %v", foo, bar))
If an operation can fail and returns an error, than checking this error immediately and handling it properly is idiomatic in go, simple and nice to check if anything gets handled properly.
Don't use defer/recover for such things: Needed cleanup actions are hard to code, especially if stuff gets nested.
The usual way to report an error to a caller is to return an error as an extra return value. The canonical Read method is a well-known instance; it returns a byte count and an error.
But what if the error is unrecoverable? Sometimes the program simply cannot continue.
For this purpose, there is a built-in function panic that in effect creates a run-time error that will stop the program (but see the next section). The function takes a single argument of arbitrary type—often a string—to be printed as the program dies. It's also a way to indicate that something impossible has happened, such as exiting an infinite loop.
http://golang.org/doc/effective_go.html#errors
I'm currently working on my first major project in clojure and have run into a question regarding coding style and the most "clojure-esque" way of doing something. Basically I have a function I'm writing which takes in a data structure and a template that the function will try to massage the data structure into. The template structure will look something like this:
{
:key1 (:string (:opt :param))
:key2 (:int (:opt :param))
:key3 (:obj (:tpl :template-structure))
:key4 (:list (:tpl :template-structure))
}
Each key is an atom that will be searched for in the given data structure, and it's value will be attempted to be matched to the type given in the template structure. So it would look for :key1 and check that it's a string, for instance. The return value would be a map that has :key1 pointing to the value from the given data structure (the function could potentially change the value depending on the options given).
In the case of :obj it takes in another template structure, and recursively calls itself on that value and the template structure, and places the result from that in the return. However, if there's an error I want that error returned directly.
Similarly for lists I want it to basically do a map of the function again, except in the case of an error which I want returned directly.
My question is what is the best way to handle these errors? Some simple exception handling would be the easiest way, but I feel that it's not the most functional way. I could try and babysit the errors all the way up the chain with tons of if statements, but that also doesn't seem very sporting. Is there something simple I'm missing or is this just an ugly problem?
You might be interested in schematic, which does pretty similar stuff. You can see how it's used in the tests, and the implementation.
Basically I defined an error function, which returns nil for correctly-formatted data, or a string describing the error. Doing it with exceptions instead would make the plumbing easier, but would make it harder to get the detailed error messages like "[person: [first_name: expected string, got integer]]".