I am beginner in Deep RL and would like to train my own gym environment in RLLIB with the PPO algorithm. However, I am having some difficulties seeing if my hyperparameter settings are being successful. Apart from the obvious episode_reward_mean metric which should rise we have many other plots.
I am especially interested in how entropy should evolve during a successful training. In my case it looks like this:
entropy.jpg
It is usually dropping below 0 and then converging. I understand that entropy as part of the loss function is enforcing exploration and can therefore speedup learning. But why is it getting negative? Shouldn't it be always greater or equal to 0?
What are other characteristics of a successful training (vf_explained_var, vf_loss, kl,...)?
If your action space is continuous, entropy can be negative, because differential entropy can be negative.
Ideally, you want the entropy to be decreasing slowly and smoothly over the course of training, as the agent trades exploration in favor of exploitation.
With regards to the vf_* metrics, it's helpful to know what they mean.
In policy gradient methods, it can be helpful to reduce the variance of rollout estimates by using a value function--parameterized by a neural network--to estimate rewards that are farther in the future (check the PPO paper for some math on page 5).
vf_explained_var is the explained variation of those future rewards through the use of the value function. You want this to be higher if possible, and it tops out at 1; however, if there is randomness in your environment it's unlikely for this to actually hit 1. vf_loss is the error that your value function is incurring; ideally this would decrease to 0, though this isn't always possible (due to randomness). kl is the difference between your old strategy and your new strategy at each time step: you want this to smoothly decrease as you train to indicate convergence.
Related
I am working on deep learning model to detect regions of timesteps with anomalies. This model should classify each timestep as possessing the anomaly or not.
My labels are something like this:
labels = [0 0 0 1 0 0 0 0 1 0 0 0 ...]
The 0s represent 'normal' timesteps and the 1s represent the existence of an anomaly. In reality, my dataset is very very imbalanced:
My training set consists of over 7000 samples, where only 1400 samples = 20% of those contain at least 1 anomaly (timestep = 1)
I am feeding samples with 4096 timesteps each. The average number of anomalies, in the samples that contain them, is around 2. So, assuming there is an anomaly, the % of anomalous timesteps ranges from 0.02% to 0.04% for each sample.
With that said, I do need to shift from the standard binary cross entropy to something that highlights the anomalous timesteps from the anomaly free timesteps.
So, I experimented adding weights to the anomalous class in such a way that the model is forced to learn from the anomalies and not just reduce its loss from the anomaly-free timesteps. It actually worked well and the model seems to learn to detect anomalous timesteps. One problem however is that training can become quite unstable (and unpredictable), with sudden loss spikes appearing and affecting the learning process. Below, you can see the effects on the loss and metrics charts for two of my trainings:
After going through a debugging process for the trainings, I am confident that the problem comes from ocasional predictions given for the anomalous timesteps. That is, in some samples of a certain epoch, and in some anomalous timesteps, the model is giving a very low prediction, e.g. 0.01, for the 1s label (should be close to 1 ofc). Considering the very high (but supposedly necessary) weights given to the anomalous timesteps, the penaly is really extreme and the loss just skyrockets.
Going deeper, if I inspect the losses of the sample where the jump happened and look for the batch right before the loss jumped, I see that the losses are all around 10^-2 - 0.0053, 0.004, 0.0041... - not a single sample with a loss over those values. Overall, an average loss of 0.005. However, if I inspect the loss of the following batch, in that same sample, the avg. loss of the batch is already 3.6, with a part of the samples with a low loss but another part with a very high loss - e.g. 9.2, 7.7, 8.9... I can confirm that all the high losses come from the penalties given at predicting the 1s timesteps. The following batches of the same sample and some of the batches of the next epoch get affected and take some time to start decreasing again and going back to a stable learning process.
With this said, I am having this problem for some weeks already and really need some guidance in what I could try to deal with the spikes, which I assume that arise on the gradient updates associated with anomalous timesteps that are harder to learn.
I am currently using a simple 2-layer keras LSTM model with 64 units each and a dense as the last layer with a 1 unit dense layer with sigmoid activation. As for the optimizer I am using Adam. I am training with batch size 128. Some things to consider also:
I have tried changes in weights and other loss functions. Ultimately, if I reduce the weights given to the anomalous timesteps the model doesn't give so much importance to them and the loss reduces by considering only the anomalous free timesteps. I have also considered focal binary cross entropy loss but it doesn't seem to do anything that could avoid those jumps as, in the end, it is all about adding or reducing weights for certain timesteps.
My current learning rate is the Adam's default, 10⁻3. I have tried reducing the learning rate which leads to less impactful spikes (they're still there though) but the model also takes much more time or gets stuck. Not sure if it would be the way to go in this case, as the training seems to go well except for these cases. Decaying learning rate might also not make too much sense as the spikes can happen earlier in the training and not only on later epochs. Not sure if this is the way to go.
I am still investigating gradient clipping as a solution. I am still not sure on what values to use and if it is actually an effective solution for my case, but from what I understood of it, it should allow to counter those jumps resulting from those 'almost' exploding gradients.
The spikes could originate from sample noise / bad samples. However, since I am already using batch size 128 and I have already tested training with simple synthetic samples I have created and the spikes were still there, I guess it is not a problem with specific samples.
The imbalance obviously plays the bigger role here. Not sure if undersampling the majority class of samples of 4096 timesteps (like increasing from 20% to 50% the amount of samples with at least an anomalous timestep) would make a big difference here since each sample of timesteps is by itself very imbalanced as it contains around 2 timesteps with anomalies. It is a problem with the imbalance within each sample.
I know it might be quite some context but honestly I am already into my limit of trying stuff for weeks.
The solutions I am inclined to go for next are either gradient clipping or just changing my samples to be more centered around the anomalous timesteps, in such a way that it contains less anomaly free timesteps and hopefully allows for convergence without having to apply such drastic weights to anomalous timesteps. This last option is more difficult for me to opt for due to some restrictions, but I might look at it if I have nothing else available.
What do you think? I am able to provide more information if needed.
I have a 2 layered Neural Network that I'm training on about 10000 features (genomic data) with about 100 samples in my data set. Now I realized that anytime I run my model (i.e. compile & fit) I get varying validation/testing accuracys even if I leave the train/test/validation split untouched. Sometimes its around 70% sometimes around 90%.
Due to the stochastic nature of the NN I anticipate some variation but could these strong fluctuations be a sign of something else?
The reason why you're seeing such a big instability with your validation accuracy is because your neural network is huge in comparison to the data you train it on.
Even with just 12 neurons per layer, you still have 12 * 10000 + 12 = 120012 parameters in your first layer. Now think about what the neural network does under the hood. It takes your 10000 inputs, it multiplies each input by some weight and then sums all these inputs. Now you provide it only 64 training examples on which the training algorithm is supposed to decide what are the correct input weights. Just based on intuition, from a purely combinatorial perspective there is going to be large amount of weight assignments that do well on your 64 training samples. And you have no guarantee that the training algorithm will pick such weight assignment that will also do well on your out-of-sample data.
Given neural network is able to represent a wide variety of functions (it's been proven that under certain assumptions it can approximate any function, that's called general approximation). To select the function you want you provide the training algorithm with data to constrain the space of all possible functions the network can represent to a subspace of functions that fit your data. However, such function is in no way guaranteed to represent the true underlying relationship between the input and the output. And especially if the number of parameters is larger than the number of samples (in this case by a few orders of magnitude), you're nearly guaranteed to see your network simply memorize the samples in your training data, simply because it has the capacity to do so and you haven't constrained it enough.
In other words, what you're seeing is overfitting. In NNs, the general rule of thumb is that you want at least a couple of times more samples than you have parameters (look in to the Hoeffding Inequality for theoretical rationale of this) and in effect the more samples you have, the less you're afraid of overfitting.
So here is a couple of possible solutions:
Use an algorithm that's more suitable for the case where you have high input dimension and low sample count, such as Kernel SVM (Support Vector Machine). With such a low sample count, it's quite possible that a Kernel SVM algorithm will achieve better and more consistent validation accuracy. (You can easily test this, they are available in the scikit-learn package, really easy to use)
If you insist on using NN - use regularization. Given the fact you already have working code, this will be easy, just add kernel_regularizer to all your layers, I would try both L1 and L2 regularization (probably separately). L1 regularization tends to push weights to zero so it might help reduce the number of parameters in your problem. L2 just tries to make all the weights small. Use your validation set to decide the best value for each regularization. You can optimize both for the best mean accuracy and also the lowest variance in accuracy on your validation data (do something like 20 training runs for each parameter value of L1 and L2 regularization, usually just trying different orders of magnitude is sufficient, e.g. 1e-4, 1e-3, 1e-2, 1e-1, 1, 1e1).
If most of your input features are not really predictive or if they are highly correlated, PCA (Principal Component Analysis) can be used to project your inputs into a much lower dimensional space (e.g. from 10000 to 20), where you'd have much smaller neural network (still I'd use L1 or L2 for regularization because even then you'd have more weights than training samples)
On a final note, the point of a testing set is to use it very sparsely (ideally only once). It should be the final reported metric after all your research and model tuning is done. You should not optimize any values on it. You should do all this on your validation set. To avoid overfitting on your validation set, look into k-fold cross validation.
I have been trying to conduct a few experiments using TensorFlow Probability (TFP), and I got a few questions.
What is the proper value of the coefficient of the KL loss?
In the paper by Blundell (2015), the coefficient is set to 1/M (where M is the number of mini-batches). In the example given by TFP, the coefficient is given as 1/mnist_data.train.num_examples. Why?
As I go from 2d input to 3d images volumes, the KL loss is still significantly larger (~1k) than the cross-entropy (~1), even after dividing by mnist_data.train.num_examples. Why?
What is the guideline for getting a proper value for this coefficient? Maybe like the two-loss terms should be the same order of magnitude?
The current coefficient only takes care of the number of training samples, but not the network complexity or number of parameters in the network, which I assume the KL loss increase with the complexity of the model.
I am trying to implement a neural network with the KL loss, without using keras.model.losses, as some software production and hardware support limitation. I am trying to train my model with TF 1.10 and TFP 0.3.0., the issue is that for tf<=1.14, tf.keras.model does not support tf.layers inside the Keras model, so I can't use my original model straight away. Is there a way to get the KL loss, not from model.losses, but from layers or weights of the network in a TF construct?
Is batch normalization or group normalization still helpful in Bayesian deep learning?
In the paper by Blundell (2015), the coefficient is set to 1/M (where M is the number of mini-batches). In the example given by TFP, the coefficient is given as 1/mnist_data.train.num_examples. Why?
In the BBB paper eq. 8, they refer to M being the number of mini-batches. To be consistent with the non-stochastic gradient learning, it should be scaled by the number of mini-batches which is what is done by Graves. Another alternative is that done in eq. 9, where they scale it by \pi_i, where the sum of all the values in the set {\pi} sum to one.
In the TFP example, it does look like the num_examples is the total number of independent samples within the training set, which is much larger than the number of batches. This is goes by a few names, such as Safe Bayes or Tempering. Have a look at sec. 8 of this paper for some more discussion about the use of tempering within Bayesian inference and it's suitability.
As I go from 2d input to 3d images volumes, the KL loss is still significantly larger (~1k) than the cross-entropy (~1), even after dividing by mnist_data.train.num_examples. Why?
The ELBO will always be larger than just your cross-entropy (which defines your likelihood). Have a look at how the KL divergence term in the ELBO is found. (and a full mean-field approach where each weight/parameter is assumed to be independent).
Since the assumed posterior is factorised (assume each parameter is independent), can write the joint distribution as a product. This means when you take the log when you are computing the KL between the approx. posterior and the prior, you can write it as a sum of the KL terms between each parameter. Since the KL is >= 0, for each parameter you add to your model you will be adding another positive term to your ELBO. This is likely why your loss is so much more for your 3D model, likely because there is more parameters.
Another reason this could occur is if you have less data (your M is smaller, than the KL term is weighted less).
What is the guideline for getting a proper value for this coefficient? Maybe like the two-loss terms should be the same order of magnitude?
I am unsure of any specific guideline, for training you are interested primarily in the gradients. A large loss does not mean a large gradient. Have a look at the gradients contributed by the negative log likelihood and the KL term in your ELBO. If the KL term is too large, you probably need a more informative prior or more data (you could simply scale the KL term but this feels a bit yucky for the Bayesian in me).
The current coefficient only takes care of the number of training samples, but not the network complexity or the number of parameters in the network, which I assume the KL loss increase with the complexity of the model.
Yes, as stated before, in general, more parameters == greater ELBO (for a mean-field approach as used in Bayes by Backprop).
I am trying to implement a neural network with the KL loss, without using keras.model.losses, as some software production and hardware support limitation. I am trying to train my model with TF 1.10 and TFP 0.3.0., the issue is that for tf<=1.14, tf.keras.model does not support tf.layers inside the Keras model, so I can't use my original model straight away. Is there a way to get the KL loss, not from model.losses, but from layers or weights of the network in a TF construct?
I am unsure about the best way to tackle this part of it. I would be cautious about going to older versions where it isn't explicitly supported. They put those warnings/exceptions in for a reason.
Is batch normalization or group normalization still helpful in Bayesian deep learning?
For variational inference (as done in Bayes by Backprop) Batchnorm is fine. For sampling methods such as MCMC, Batch normalization is no longer suitable. Have a look at https://arxiv.org/pdf/1908.03491v1.pdf for info on suitability for batch norm with sampling methods for approx. Bayesian inference.
I've found what is probably a rare case in Tensorflow, but I'm trying to train a classifier (linear or nonlinear) using KL divergence (cross entropy) as the cost function in Tensorflow, with soft targets/labels (labels that form a valid probability distribution but are not "hard" 1 or 0).
However it is clear (tell-tail signs) that something is definitely wrong. I've tried both linear and nonlinear (dense neural network) forms, but no matter what I always get the same final value for my loss function regardless of network architecture (even if I train only a bias). Also, the cost function converges extremely quickly (within like 20-30 iterations) using L-BFGS (a very reliable optimizer!). Another sign something is amiss is that I can't overfit the data, and the validation set appears to have exactly the same loss value as the training set. However, strangely I do see some improvements when I increase network architecture size and/or change regularization loss. The accuracy improves with this as well (although not to the point that I'm happy with it or it's as I expect).
It DOES work as expected when I use the exact same code but send in one-hot encoded labels (not soft targets). An example of the cost function from training taken from Tensorboard is shown below. Can someone pitch me some ideas?
Ahh my friend, you're problem is that with soft targets, especially ones that aren't close to 1 or zero, cross entropy loss doesn't change significantly as the algorithm improves. One thing that will help you understand this problem is to take an example from your training data and compute the entropy....then you will know what the lowest value your cost function can be. This may shed some light on your problem. So for one of your examples, let's say the targets are [0.39019628, 0.44301641, 0.16678731]. Well, using the formula for cross entropy
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
but then using the targets "y_" in place of the predicted probabilities "y" we arrive at the true entropy value of 1.0266190072458234. If you're predictions are just slightly off of target....lets say they are [0.39511779, 0.44509024, 0.15979198], then the cross entropy is 1.026805558049737.
Now, as with most difficult problems, it's not just one thing but a combination of things. The loss function is being implemented correctly, but you made the "mistake" of doing what you should do in 99.9% of cases when training deep learning algorithms....you used 32-bit floats. In this particular case though, you will run out of significant digits that a 32-bit float can represent well before you training algorithm converges to a nice result. If I use your exact same data and code but only change the data types to 64-bit floats though, you can see below that the results are much better -- your algorithm continues to train well out past 2000 iterations and you will see it reflected in your accuracy as well. In fact, you can see from the slope if 128 bit floating point was supported, you could continue training and probably see advantages from it. You wouldn't probably need that precision in your final weights and biases...just during training to support continuing optimization of the cost function.
When I execute the cifar10 model as described at https://www.tensorflow.org/tutorials/deep_cnn I achieve 86% accuracy after approx 4 hours using a single GPU , when I utilize 2 GPU's the accuracy drops to 84% but reaching 84% accuracy is faster on 2 GPU's than 1.
My intuition is
that average_gradients function as defined at https://github.com/tensorflow/models/blob/master/tutorials/image/cifar10/cifar10_multi_gpu_train.py returns a less accurate gradient value as an average of gradients will be less accurate than the actual gradient value.
If the gradients are less accurate then the parameters than control the function that is learned as part of training is less accurate. Looking at the code (https://github.com/tensorflow/models/blob/master/tutorials/image/cifar10/cifar10_multi_gpu_train.py) why is averaging the gradients over multiple GPU's less accurate than computing the gradient on a single GPU ?
Is my intuition of averaging the gradients producing a less accurate value correct ?
Randomness in the model is described as :
The images are processed as follows:
They are cropped to 24 x 24 pixels, centrally for evaluation or randomly for training.
They are approximately whitened to make the model insensitive to dynamic range.
For training, we additionally apply a series of random distortions to artificially increase the data set size:
Randomly flip the image from left to right.
Randomly distort the image brightness.
Randomly distort the image contrast.
src : https://www.tensorflow.org/tutorials/deep_cnn
Does this have an effect on training accuracy ?
Update :
Attempting to investigate this further, the loss function value training with different number of GPU's.
Training with 1 GPU : loss value : .7 , Accuracy : 86%
Training with 2 GPU's : loss value : .5 , Accuracy : 84%
Shouldn't the loss value be lower for higher for higher accuracy, not vice versa ?
In the code you linked, using the function average_gradient with 2 GPUs is exactly equivalent (1) to simply using 1 GPU with twice the batch size.
You can see it in the definition:
grad = tf.concat(axis=0, values=grads)
grad = tf.reduce_mean(grad, 0)
Using a larger batch size (given the same number of epochs) can have any kind of effect on your results.
Therefore, if you want to do exactly equivalent (1) calculations in 1-GPU or 2-GPU cases, you may want to halve the batch size in the latter case. (People sometimes avoid doing it, because smaller batch sizes may also make the computation on each GPU slower, in some cases)
Additionally, one needs to be careful with learning rate decay here. If you use it, you want to make sure the learning rate is the same in the nth epoch in both 1-GPU and 2-GPU cases -- I'm not entirely sure this code is doing the right thing here. I tend to print the learning rate in the logs, something like
print sess.run(lr)
should work here.
(1) Ignoring issues related to pseudo-random numbers, finite precision or data set sizes not divisible by the batch size.
There is a decent discussion of this here (not my content). Basically when you distribute SGD, you have to communicate gradients back and forth somehow between workers. This is inherently imperfect, and so your distributed SGD typically diverges from a sequential, single-worker SGD at least to some degree. It is also typically faster, so there is a trade off.
[Zhang et. al., 2015] proposes one method for distributed SGD called elastic-averaged SGD. The paper goes through a stability analysis characterizing the behavior of the gradients under different communication constraints. It gets a little heavy, but it might shed some light on why you see this behavior.
Edit: regarding whether the loss should be lower for the higher accuracy, it is going to depend on a couple of things. First, I am assuming that you are using softmax cross-entropy for your loss (as stated in the deep_cnn tutorial you linked), and assuming accuracy is the total number of correct predictions divided by the total number of samples. In this case, a lower loss on the same dataset should correlate to a higher accuracy. The emphasis is important.
If you are reporting loss during training but then report accuracy on your validation (or testing) dataset, it is possible for these two to be only loosely correlated. This is because the model is fitting (minimizing loss) to a certain subset of your total samples throughout the training process, and then tests against new samples that it has never seen before to verify that it generalizes well. The loss against this testing/validation set could be (and probably is) higher than the loss against the training set, so if the two numbers are being reported from different sets, you may not be able to draw comparisons like "loss for 1 GPU case should be lower since its accuracy is lower".
Second, if you are distributing the training then you are calculating losses across multiple workers (I believe), but only one accuracy at the end, again against a testing or validation set. Maybe the loss being reported is the best loss seen by any one worker, but overall the average losses were higher.
Basically I do not think we have enough information to decisively say why the loss and accuracy do not seem to correlate the way you expect, but there are a number of ways this could be happening, so I wouldn't dismiss it out of hand.
I've also encountered this issue.
See Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour from Facebook which addresses the same issue. The suggested solution is simply to scale up the learning rate by k (after some reasonable warm-up epochs) for k GPUs.
In practice I've found out that simply summing up the gradients from the GPUs (rather than averaging them) and using the original learning rate sometimes does the job as well.