Purpose of pooling layer after text embedding layer - tensorflow

I'm following the tutorial on the tensorflow site (https://www.tensorflow.org/tutorials/text/word_embeddings#create_a_simple_model) to learn word embeddings, and a confusion that I have is about the purpose of having a Globalaveragepooling layer right after the embedding layer as follows:
model = keras.Sequential([
layers.Embedding(encoder.vocab_size, embedding_dim),
layers.GlobalAveragePooling1D(),
layers.Dense(16, activation='relu'),
layers.Dense(1)
])
I understand what pooling means and how it's done. If someone can explain why we need a pooling layer, and what would change if we didn't use it, I'd appreciate it.

The purpose of this tutorial is to get you to understand word-embeddings through a simple toy task: binary sentiment analysis.
To start with, they make you code a simple model: take the average of all embeddings in a sentence and add a feed-forward neural net to classify this aggregated input. GlobalAveragePooling1D does this averaging.
Obviously in the real world you'd want to use more complex models as RNNs, LSTMs, bidirectional models, atrous-convolution-based models or Transformers but that's not the point in this tutorial.
The "simple model" they mention being a feed-forward neural net, it expects a fixed input dimension so when you have sequential data of variable length you need to address this somehow: averaging, padding, cropping etc. Here they average with this GlobalAveragePooling1D layer

Related

Is validation curve slight greater or lower in CNN models good?

Can you tell me which one among the two is a good validation vs train plot?
Both of them are trained with same keras sequential layers, but the second one is trained using more number of samples, i.e. augmented the dataset.
I'm a little bit confused about the zigzags in the first plot, otherwise I think it is better than the second.
In the second plot, there are no zigzags but the validation accuracy tends to be a little high than train, is it overfitting or considerable?
It is an image detection model where the first model's dataset size is 5170 and the second had 9743 samples.
The convolutional layers defined for the model building:
tf.keras.layers.Conv2D(128,(3,3), activation = 'relu', input_shape = (150,150,3)),
tf.keras.layers.MaxPool2D(2,2),
tf.keras.layers.Conv2D(64,(3,3), activation = 'relu'),
tf.keras.layers.MaxPool2D(2,2),
tf.keras.layers.Conv2D(32,(3,3), activation = 'relu'),
tf.keras.layers.MaxPool2D(2,2),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(512,activation='relu'),
tf.keras.layers.Dropout(0.5),
tf.keras.layers.Dense(128,activation='relu'),
tf.keras.layers.Dropout(0.25),
tf.keras.layers.Dense(1,activation='sigmoid')
Can the model be improved?
From the graphs the second graph where you have more samples is better. The reason is with more samples the model is trained on a much wider probability distribution of images. So when validation is run you have a better chance of correctly classifying the image. You have a lot of dropout in your model. This is good to prevent over fitting, however it will lower the training accuracy relative to the validation accuracy. Your model seems to be doing well. It might improve if you add additional convolution- max pooling layers. Alternative of course is to use transfer learning. I would recommend efficientnetb3. I also recommend using an adjustable learning rate. The Keras callback ReduceLROnPlateau works well for that purpose. Documentation is here.. Code below shows my recommended settings.
rlronp=tf.keras.callbacks.ReduceLROnPlateau(
monitor='val_loss',
factor=0.5,
patience=2,
verbose=1,
mode='auto'
)
in model.fit include callbacks=[rlronp]

Should I delete last 7 layers of VGG16 as I am going to use it as a pretrained model for a signature verification task?

As far as I know, cnn's last layers identify objects as a whole, this is irrelevant to the dataset with signatures. Thus, I want to remove them and add additional layers on top of the model, freezing the VGG16 from training. How would the removal of layers potentially affect the model's performance, or should I just leave and delete only dense layers?
I need to add additional layers on top anyway for the school report about the effect of convolutional layers' configurations on the model's performance.
p.s my dataset is really small it contains nearly 700 samples, which is extremely small n i know that(i tried augmenting data)
I have a dataset with Chinese signatures, but I thought that it is better to train it separately//
I am not proficient in this field and I started my acquaintance from deep learning, so pls correct me if you noticed any misconception in my explanation?/
Easiest way is to use VGG with include_top=False, weights='imagenet, and set pooling = max. This will instantiate the model with imagenet weights, the top classification layer is removed and the output of the VGG model is a flat vector you can feed directly into a dense layer. My typical code for this is shown below. In the final layer class_count is the number of classes in the training data.
base_model=tf.keras.applications.VGG16(include_top=False, weights="imagenet",input_shape=img_shape, pooling='max')
x=base_model.output
x=keras.layers.BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001 )(x)
x = Dense(256, kernel_regularizer = regularizers.l2(l = 0.016),activity_regularizer=regularizers.l1(0.006),
bias_regularizer=regularizers.l1(0.006) ,activation='relu')(x)
x=Dropout(rate=.45, seed=123)(x)
output=Dense(class_count, activation='softmax')(x)
model=Model(inputs=base_model.input, outputs=output)
How would the removal of layers potentially affect the model's performance, or should I just leave and delete only dense layers?
This is hard to answer because what performance are you talking about? VGG16 originally were build to Imagenet problem with 1000 classes, so if you use it without any modifications probably won't work at all.
Now, if you are talking about transfer learning, so yes, the last dense layers could be replaced to classify your dataset, because the model created with cnn layers in VGG16 is a good pattern recognizer. The fully connected layers at the end work as a classifier for this patterns and you should replace it and train it again for your specific problem. VGG16 has 3 dense layers (FC1, FC2 and FC3) at end, keras only allow you to remove all three, so if you want replace just the last one, you will need to remove all three and rebuild the FC1 and FC2.
The key is what you are going to train after that, you could:
Use original weights (imagenet) in cnn layers and start you trainning from that, just finetunning with a small learning rate. A good choice when you dataset is similar to original and you have a good amount of it.
Use original weights (imagenet) in cnn layers, but freeze them, and just training the weights in the dense layers you replaced. A good choice when your dataset is small.
Don't use the original weights and retrain all the model. Usually not a good choice, because you will need to be an expert to tunning the parameters, tons of data and computacional power to make it work.

What are the uses of layers in keras/Tensorflow

So I am new to computer vision, and I do not really know what the layers do in keras. What is the use of adding layers (dense, Conv2D, etc) in keras? What do they add to it?
Convolution neural network has 4 main steps: Convolution, Pooling, Flatten, and Full connection.
Conv2D(), Conv3D(), etc. is for Feature extraction (It's a Convolution Layer).
Pooling layers (MaxPool2D(), AvgPool2D(), etc) is for Feature extraction as well (It has different operation though).
Flattening layers (Flatten() ) are to convert the extracted feature map into Vector before being fed into the Fully connection layers (The Dense layers).
Dense layers are for Fully connected step in Computer vision that acts as Classifier (The Neural network classify each extracted features from the Convolution layers.)
There are also optimization layers such as Dropout(), BatchNormalization(), etc.
For more information, just open the keras documentation.
If you want to start learning Convolution neural network, this article may help.
A layer in an Artificial Neural Network is a bunch of nodes bound together at a specific depth in a Neural Network. Keras is a high level API used over NN modules like TensorFlow or CNTK in order to simplify tasks. A Keras layer comprises 3 main parts:
Input Layer - Which contains the raw data
Hidden layer - Where the nodes of a layer learn some aspects about
the raw data which is input. It's similar to levels of abstraction
to form a Neural network.
Output Layer - Consists of a single output which is mostly a single
node and can be subjected to classification.
Keras, as a whole consists of many different types of layers. A Convolutional layer creates a kernel which is convoluted with the input over a single temporal space to derive a group of outputs. Pooling layers provide sampling of the feature maps by simplifying features in a map into patches. Max Pooling and Average Pooling are commonly used methods in a Pool layer.
Other commonly used layers in Keras are Embedding layers, Noise layers and Core layers. A single NN layer can represent only a Linearly seperable method. Most prediction problems are complicated and more than just one layer is required. This is where Multi Layer concept is required.
I think i clear your doubts and for any other queries you can see on https://www.tensorflow.org/api_docs/python/tf/keras
Neural networks are a great tool nowadays to automate classification problems. However when it comes to computer vision the amount of input data is too great to be handled efficiently by simple neural networks.
To reduce the network workload, your data needs to be preprocessed and certain features need to be identified. To find features in images we can use certain filters (like sobel edge detection), which will highlight the essential features needed for classification.
Again the amount of filters required to classify one image is too great, and thus the selection of those filters needs to be automated.
That's where the convolutional layer comes in.
We use a convolutional layer to generate multiple random (at first) filters that will highlight certain features in an image. While the network is training those filters are optimized to do a better job at highlighting features.
In Tensorflow we use Conv2D() to add one of those layers. An example of parameters is : Conv2D(64, 3, activation='relu'). 64 denotes the number of filters used, 3 denotes the size of the filters (in this case 3x3) and activation='relu' denotes the activation function
After the convolutional layer we use a pooling layer to further highlight the features produced by the previous convolutional layer. In Tensorflow this is usually done with MaxPooling2D() which takes the filtered image and applies a 2x2 (by default) layer every 2 pixels. The filter applied by MaxPooling is basically looking for the maximum value in that 2x2 area and adds it in a new image.
We can use this set of convolutional layer and pooling layers multiple times to make the image easier for the network to work with.
After we are done with those layers, we need to pass the output to a conventional (Dense) neural network.
To do that, we first need to flatten the image data from a 2D Tensor(Matrix) to a 1D Tensor(Vector). This is done by calling the Flatten() method.
Finally we need to add our Dense layers which are used to train on the flattened data. We do this by calling Dense(). An example of parameters is Dense(64, activation='relu')
where 64 is the number of nodes we are using.
Here is an example CNN structure I used recently:
# Build model
model = tf.keras.models.Sequential()
# Convolution and pooling layers
model.add(tf.keras.layers.Conv2D(64, 3, activation='relu', input_shape=(IMG_SIZE, IMG_SIZE, 1))) # Input layer
model.add(tf.keras.layers.MaxPooling2D())
model.add(tf.keras.layers.Conv2D(64, 3, activation='relu'))
model.add(tf.keras.layers.MaxPooling2D())
# Flattened layers
model.add(tf.keras.layers.Flatten())
# Dense layers
model.add(tf.keras.layers.Dense(64, activation='relu'))
model.add(tf.keras.layers.Dense(2, activation='softmax')) # Output layer
Of course this worked for a certain classification problem and the number of layers and method parameters differ depending on the problem.
The Youtube channel The Coding Train has a very helpful video explaining the Convolutional and Pooling layer.

Is my training data set too complex for my neural network?

I am new to machine learning and stack overflow, I am trying to interpret two graphs from my regression model.
Training error and Validation error from my machine learning model
my case is similar to this guy Very large loss values when training multiple regression model in Keras but my MSE and RMSE are very high.
Is my modeling underfitting? if yes what can I do to solve this problem?
Here is my neural network I used for solving a regression problem
def build_model():
model = keras.Sequential([
layers.Dense(128, activation=tf.nn.relu, input_shape=[len(train_dataset.keys())]),
layers.Dense(64, activation=tf.nn.relu),
layers.Dense(1)
])
optimizer = tf.keras.optimizers.RMSprop(0.001)
model.compile(loss='mean_squared_error',
optimizer=optimizer,
metrics=['mean_absolute_error', 'mean_squared_error'])
return model
and my data set
I have 500 samples, 10 features and 1 target
Quite the opposite: it looks like your model is over-fitting. When you have low error rates for your training set, it means that your model has learned from the data well and can infer the results accurately. If your validation data is high afterwards however, that means that the information learned from your training data is not successfully being applied to new data. This is because your model has 'fit' onto your training data too much, and only learned how to predict well when its based off of that data.
To solve this, we can introduce common solutions to reduce over-fitting. A very common technique is to use Dropout layers. This will randomly remove some of the nodes so that the model cannot correlate with them too heavily - therefor reducing dependency on those nodes and 'learning' more using the other nodes too. I've included an example that you can test below; try playing with the value and other techniques to see what works best. And as a side note: are you sure that you need that many nodes within your dense layer? Seems like quite a bit for your data set, and that may be contributing to the over-fitting as a result too.
def build_model():
model = keras.Sequential([
layers.Dense(128, activation=tf.nn.relu, input_shape=[len(train_dataset.keys())]),
Dropout(0.2),
layers.Dense(64, activation=tf.nn.relu),
layers.Dense(1)
])
optimizer = tf.keras.optimizers.RMSprop(0.001)
model.compile(loss='mean_squared_error',
optimizer=optimizer,
metrics=['mean_absolute_error', 'mean_squared_error'])
return model
Well i think your model is overfitting
There are several ways that can help you :
1-Reduce the network’s capacity Which you can do by removing layers or reducing the number of elements in the hidden layers
2- Dropout layers, which will randomly remove certain features by setting them to zero
3-Regularization
If i want to give a brief explanation on these:
-Reduce the network’s capacity:
Some models have a large number of trainable parameters. The higher this number, the easier the model can memorize the target class for each training sample. Obviously, this is not ideal for generalizing on new data.by lowering the capacity of the network, it's going to learn the patterns that matter or that minimize the loss. But remember،reducing the network’s capacity too much will lead to underfitting.
-regularization:
This page can help you a lot
https://towardsdatascience.com/handling-overfitting-in-deep-learning-models-c760ee047c6e
-Drop out layer
You can use some layer like this
model.add(layers.Dropout(0.5))
This is a dropout layer with a 50% chance of setting inputs to zero.
For more details you can see this page:
https://machinelearningmastery.com/how-to-reduce-overfitting-with-dropout-regularization-in-keras/
As mentioned in the existing answer by #omoshiroiii your model in fact seems to be overfitting, that's why RMSE and MSE are too high.
Your model learned the detail and noise in the training data to the extent that it is now negatively impacting the performance of the model on new data.
The solution is therefore randomly removing some of the nodes so that the model cannot correlate with them too heavily.

DeepLearning Anomaly Detection for images

I am still relatively new to the world of Deep Learning. I wanted to create a Deep Learning model (preferably using Tensorflow/Keras) for image anomaly detection. By anomaly detection I mean, essentially a OneClassSVM.
I have already tried sklearn's OneClassSVM using HOG features from the image. I was wondering if there is some example of how I can do this in deep learning. I looked up but couldn't find one single code piece that handles this case.
The way of doing this in Keras is with the KerasRegressor wrapper module (they wrap sci-kit learn's regressor interface). Useful information can also be found in the source code of that module. Basically you first have to define your Network Model, for example:
def simple_model():
#Input layer
data_in = Input(shape=(13,))
#First layer, fully connected, ReLU activation
layer_1 = Dense(13,activation='relu',kernel_initializer='normal')(data_in)
#second layer...etc
layer_2 = Dense(6,activation='relu',kernel_initializer='normal')(layer_1)
#Output, single node without activation
data_out = Dense(1, kernel_initializer='normal')(layer_2)
#Save and Compile model
model = Model(inputs=data_in, outputs=data_out)
#you may choose any loss or optimizer function, be careful which you chose
model.compile(loss='mean_squared_error', optimizer='adam')
return model
Then, pass it to the KerasRegressor builder and fit with your data:
from keras.wrappers.scikit_learn import KerasRegressor
#chose your epochs and batches
regressor = KerasRegressor(build_fn=simple_model, nb_epoch=100, batch_size=64)
#fit with your data
regressor.fit(data, labels, epochs=100)
For which you can now do predictions or obtain its score:
p = regressor.predict(data_test) #obtain predicted value
score = regressor.score(data_test, labels_test) #obtain test score
In your case, as you need to detect anomalous images from the ones that are ok, one approach you can take is to train your regressor by passing anomalous images labeled 1 and images that are ok labeled 0.
This will make your model to return a value closer to 1 when the input is an anomalous image, enabling you to threshold the desired results. You can think of this output as its R^2 coefficient to the "Anomalous Model" you trained as 1 (perfect match).
Also, as you mentioned, Autoencoders are another way to do anomaly detection. For this I suggest you take a look at the Keras Blog post Building Autoencoders in Keras, where they explain in detail about the implementation of them with the Keras library.
It is worth noticing that Single-class classification is another way of saying Regression.
Classification tries to find a probability distribution among the N possible classes, and you usually pick the most probable class as the output (that is why most Classification Networks use Sigmoid activation on their output labels, as it has range [0, 1]). Its output is discrete/categorical.
Similarly, Regression tries to find the best model that represents your data, by minimizing the error or some other metric (like the well-known R^2 metric, or Coefficient of Determination). Its output is a real number/continuous (and the reason why most Regression Networks don't use activations on their outputs). I hope this helps, good luck with your coding.