I am trying to declare two suspend methods with list of String and PublishRequest Object as parameter. But the IDE is giving error with this.
The error is either make one of the function internal or remove suspend. But i want to use coroutines inside both of them.
override suspend fun publish(publishRequests: List<PublishRequest>) {
///code
}
suspend fun publish(events: List<String>) {
///code
}
The PublishRequest Data class is internal. The issues is only coming when we add the publish(events: List) method. The code is working fine the publish(publishRequests: List)
Can you explain why it is happening ?
The problem you are facing is related to type erasure.
The types List<PublishRequest> and List<String> are erased to List<*>, as consequence, you would have a JVM signature clash.
To solve your problem you have two different solutions.
Change their names and avoid a signature clash:
suspend fun publishRequests(publishRequests: List<PublishRequest>) {}
suspend fun publishEvents(events: List<String>) {}
Use a single function with a reified type and handle the different type classes inside that function:
suspend inline fun <reified T> publish(objects: List<T>) {
when {
PublishRequest::class.java.isAssignableFrom(T::class.java) -> // it's a list of PublishRequest
T::class == String::class -> // it's a list of String
}
}
Related
I am trying to create a dynamic service based on the data class model defined by user and they registerDataModels() method appDataModule() it should automatically create all based method in the router service. When I try to achive using generics in those method I am getting a compiler error. Is there any other better way to dynamically create route methods like by defining the datamodel by developer and then service should be automatically created?
org.jetbrains.kotlin.backend.common.BackendException: Backend Internal error: Exception during IR lowering
File being compiled: */api/AppConfigService.kt
The root cause java.lang.RuntimeException was thrown at: org.jetbrains.kotlin.backend.jvm.codegen.FunctionCodegen.generate(FunctionCodegen.kt:47)
File is unknown
The root cause java.lang.AssertionError was thrown at: org.jetbrains.kotlin.codegen.coroutines.CoroutineTransformerMethodVisitor.spillVariables(CoroutineTransformerMethodVisitor.kt:636)
fun Application.registerDataModels() {
appDataModule<M1>()
appDataModule<M2>()
appDataModule<M3>()
}
inline fun <reified T: DBModel> Application.appDataModule() {
routing {
createAppData<T>()
updateAppData<T>()
deleteAppData<T>()
}
}
inline fun <reified T: DBModel> Route.createAppData() {
put("/api/data/${getName<T>()}/create") {
authenticated {
create<T>{}
}
}
}
inline fun <reified T: DBModel> Route.updateAppData() {
put("/api/data/${getName<T>()}/update") {
authenticated {
update<T>{}
}
}
}
inline fun <reified T: DBModel> Route.deleteAppData() {
put("/api/data/${getName<T>()}/delete") {
authenticated {
delete<T>{}
}
}
}
Note: This answer assumed that code would be loaded at runtime, which seems not to be the case, and is therefore not completely matching OP's question.
You are using inline functions with reified.
To make a long story short, inline functions are compiled and 'copied' to the location where they are being used, already with a fixed (thats what reified does) class. So when you use an inline function
inline fun <reified T> foo(t: T): T { ... }
and you call it like this:
val myVal = foo("test").uppercase()
then at compile time of that calling line of code, the type of T is known to be String and the target line is compiled accordingly, so you know at runtime which type T is within your function.
It is (for this one calling line) as if that function was like this to begin with:
fun foo(t: String): String { ... }
Because you want to compile these classes dynamically, however, this process fails, because the class obviously does not exist yet. This is simply due to the nature of reified. If you can somehow remove it, it might work.
I agree that the error message of the compiler could be more telling here. Maybe you can raise a task on kotlin's issue tracking platform?: https://youtrack.jetbrains.com/issues/kt?_gl=1*5r6x4d*_ga*MTQyMDYxMjc2MS4xNjMzMzQwMzk5*_ga_9J976DJZ68*MTY2OTM1NjM1MS4yMS4xLjE2NjkzNTYzNTcuMC4wLjA.&_ga=2.265829455.1332696793.1669356352-1420612761.1633340399
I would like to combine a Kotlin extension function on some receiver class Receiver with arrow-kt's either comprehension. In a regular Kotlin extension function, this binds to the receiver object; however, the either-comprehension EitherEffect shadows the Receiver this:
suspend fun Receiver.myFun(param: String): Either<Throwable, String> = either {
this.someMethod(...).bind() // Cannot access Receiver.someMethod, <this> is bound to EitherEffect
...
}
How can I access the receiver context within arrow's either-comprehension block (or any other monadic comprehension block)?
This is an issue inherited from Kotlin, but you can always access outer scoped this by referencing it by name. Here you can access Receiver by referencing it by this#myFun.
suspend fun Receiver.myFun(param: String): Either<Throwable, String> = either {
this#myFun.someMethod(...).bind() // Cannot access Receiver.someMethod, <this> is bound to EitherEffect
...
}
However, you should be able to simply call someMethod here without referencing this.
suspend fun Receiver.myFun(param: String): Either<Throwable, String> = either {
someMethod(...).bind()
...
}
Hope that solves your issue.
coming across a sample with a class and a function and trying to understand the koltin syntax there,
what does this IMeta by dataItem do? looked at https://kotlinlang.org/docs/reference/classes.html#classes and dont see how to use by in the derived class
why the reified is required in the inline fun <reified T> getDataItem()? If someone could give a sample to explain the reified?
class DerivedStreamItem(private val dataItem: IMeta, private val dataType: String?) :
IMeta by dataItem {
override fun getType(): String = dataType ?: dataItem.getType()
fun getData(): DerivedData? = getDataItem()
private inline fun <reified T> getDataItem(): T? = if (dataItem is T) dataItem else null
}
for the reference, copied the related defines here:
interface IMeta {
fun getType() : String
fun getUUIDId() : String
fun getDataId(): String?
}
class DerivedData : IMeta {
override fun getType(): String {
return "" // stub
}
override fun getUUIDId(): String {
return "" // stub
}
override fun getDataId(): String? {
return "" // stub
}
}
why the reified is required in the inline fun <reified T> getDataItem()? If someone could give a sample to explain the reified?
There is some good documentation on reified type parameters, but I'll try to boil it down a bit.
The reified keyword in Kotlin is used to get around the fact that the JVM uses type erasure for generic. That means at runtime whenever you refer to a generic type, the JVM has no idea what the actual type is. It is a compile-time thing only. So that T in your example... the JVM has no idea what it means (without reification, which I'll explain).
You'll notice in your example that you are also using the inline keyword. That tells Kotlin that rather than call a function when you reference it, to just insert the body of the function inline. This can be more efficient in certain situations. So, if Kotlin is already going to be copying the body of our function at compile time, why not just copy the class that T represents as well? This is where reified is used. This tells Kotlin to refer to the actual concrete type of T, and only works with inline functions.
If you were to remove the reified keyword from your example, you would get an error: "Cannot check for instance of erased type: T". By reifying this, Kotlin knows what actual type T is, letting us do this comparison (and the resulting smart cast) safely.
(Since you are asking two questions, I'm going to answer them separately)
The by keyword in Kolin is used for delegation. There are two kinds of delegation:
1) Implementation by Delegation (sometimes called Class Delegation)
This allows you to implement an interface and delegate calls to that interface to a concrete object. This is helpful if you want to extend an interface but not implement every single part of it. For example, we can extend List by delegating to it, and allowing our caller to give us an implementation of List
class ExtendedList(someList: List) : List by someList {
// Override anything from List that you need
// All other calls that would resolve to the List interface are
// delegated to someList
}
2) Property Delegation
This allows you to do similar work, but with properties. My favorite example is lazy, which lets you lazily define a property. Nothing is created until you reference the property, and the result is cached for quicker access in the future.
From the Kotlin documentation:
val lazyValue: String by lazy {
println("computed!")
"Hello"
}
I need to be able to tell the generic type of kotlin collection at runtime. How can I do it?
val list1 = listOf("my", "list")
val list2 = listOf(1, 2, 3)
val list3 = listOf<Double>()
/* ... */
when(list.genericType()) {
is String -> handleString(list)
is Int -> handleInt(list)
is Double -> handleDouble(list)
}
Kotlin generics share Java's characteristic of being erased at compile time, so, at run time, those lists no longer carry the necessary information to do what you're asking. The exception to this is if you write an inline function, using reified types. For example this would work:
inline fun <reified T> handleList(l: List<T>) {
when (T::class) {
Int::class -> handleInt(l)
Double::class -> handleDouble(l)
String::class -> handleString(l)
}
}
fun main() {
handleList(mutableListOf(1,2,3))
}
Inline functions get expanded at every call site, though, and mess with your stack traces, so you should use them sparingly.
Depending on what you're trying to achieve, though, there's some alternatives. You can achieve something similar at the element level with sealed classes:
sealed class ElementType {
class DoubleElement(val x: Double) : ElementType()
class StringElement(val s: String) : ElementType()
class IntElement(val i: Int) : ElementType()
}
fun handleList(l: List<ElementType>) {
l.forEach {
when (it) {
is ElementType.DoubleElement -> handleDouble(it.x)
is ElementType.StringElement -> handleString(it.s)
is ElementType.IntElement -> handleInt(it.i)
}
}
}
You can use inline functions with reified type parameters to do that:
inline fun <reified T : Any> classOfList(list: List<T>) = T::class
(runnable demo, including how to check the type in a when statement)
This solution is limited to the cases where the actual type argument for T is known at compile time, because inline functions are transformed at compile time, and the compiler substitutes their reified type parameters with the real type at each call site.
On JVM, the type arguments of generic classes are erased at runtime, and there is basically no way to retrieve them from an arbitrary List<T> (e.g. a list passed into a non-inline function as List<T> -- T is not known at compile-time for each call and is erased at runtime)
If you need more control over the reified type parameter inside the function, you might find this Q&A useful.
I have class:
class Generic<T : SuperType>() { ... }
And this code is't correct, but cast s to type T:
fun typeCheck(s: SuperType) {
when(s) {
is T -> // Do something
}
}
If use: s as T - this cast will show warning (unsafe cast).
How check that s is T type?
If you need to check if something is of generic type T you need to to have an instance of Class<T> to check against. This is a common technique in Java however in Kotlin we can make use of an inlined factory method that gets us the class object.
class Generic<T : Any>(val klass: Class<T>) {
companion object {
inline operator fun <reified T : Any>invoke() = Generic(T::class.java)
}
fun checkType(t: Any) {
when {
klass.isAssignableFrom(t.javaClass) -> println("Correct type")
else -> println("Wrong type")
}
}
}
fun main(vararg args: String) {
Generic<String>().checkType("foo")
Generic<String>().checkType(1)
}
Generic types are not reified on the JVM at runtime, so there's no way to do this in Kotlin. The warning is correct because the compiler can't possibly generate any instruction that will fail when the cast is done, so the cast is unchecked, meaning that the program may or may not break at some point later instead.
A related feature which might be of use is reified type parameters in inline functions. Classes can't have reified type parameters though, so if you elaborate a bit more on your use case, I can try helping you achieve what you seem to need.
I know that I'm kinda late to this thread, but I just want to recap on the answer provided by Alexander Udalov.
It is, indeed, impossible to determine the type of a generic parameter in Kotlin unless you're using inline functions and declaring the generic type as reified.
Not sure if I'll be able to answer this question entirely and accurately, but I feel like my contribution might still be valuable for someone who is attempting to do just that. So let's say you have a few data classes, and you want to check which type you're dealing with.
You could use a function like that:
inline fun <reified T> checkType() = when (T::class) {
TypeA::class -> println("TypeA")
else -> println("Type not recognized")
}
however, functions that call it must also be inline, so you might have to write something like
inline fun <reified T> someOtherFunction(data: T) {
checkType<T>
}
however, if you cannot allow for an inline function (let's say in an interface!), you can kinda 'cheat' the system by saying, for example
class AmazingTypes {
inline fun <reified T> checkType(genericParameter: T) = when (T::class) {
TypeA::class -> println("TypeA")
else -> println("Type not recognized")
}
}
fun myAwesomeMethod(someParameter: Any) {
val amazingClass = AmazingClass()
amazingClass.checkType(someParameter)
}
This is also example.
inline fun <reified T: ApiResponse> parseJson(body: String): T {
// handle OkResponse only
val klass = T::class.java
if (klass.isAssignableFrom(OkResponse::class.java)) {
return T::class.java.newInstance()
}
// handle others
return gson.from(body, T::class.java)
}