The Theory of Object oriented programming - oop

This question concerns a generalized approach to building up a hierarchy of objects. I shall use an example to explain my questions.
Suppose im building a digital circuit simulator, and we do this with an Object-oriented class structure. The base class is logic gates, from which we derive binary gates and unary gates, then from binary gates, we derive the classes AND, OR, XOR etc. and from unary gates, we derive the class for a NOT gate. This makes sense, as at each layer you become more specified, and you branch into subsets which have data that is unique to that derived class.
But suppose then we want to build something out of our derived logic gate classes, for example, an 8-bit adder circuit. In this case, the 8-bit adder is not part of the original hierarchy structure - it is not a logic gate, but despite that, it can be built of out of the logic gate objects. Additionally, the 8-bit adder can be broken down into 8 full adders, which can each be broken down into 2 half adders. But as opposed to the original logic gate hierarchy, each of these objects (8-bit adder, full adder & half adder) all operate as individual components, whereas the only classes which actually serve as a component from the logic gate hierarchy are the final derived classes, AND, OR, XOR, NOT. In this sense, I don't understand whether or not it would be appropriate to create a class structure based on inheritance for the adder circuits.
To me, it seems as though the half-adder, full-adder and 8-bit adder, should each be comprised of individual logic gate objects, but this would be inefficient as it would require lots of repetition of code, and so this begs the question, what is the best way to arrange these class structures so that the most complex 8-bit adder can be built from full adders, and the full adders can be built from half adders, and the half adders can be built from individual logic gates.
Many thanks to all that answer.

Related

Definitions of Phenotype and Genotype

Can someone help me understand the definitions of phenotype and genotype in relation to evolutionary algorithms?
Am I right in thinking that the genotype is a representation of the solution. And the phenotype is the solution itself?
Thanks
Summary: For simple systems, yes, you are completely right. As you get into more complex systems, things get messier.
That is probably all most people reading this question need to know. However, for those who care, there are some weird subtleties:
People who study evolutionary computation use the words "genotype" and "phenotype" frustratingly inconsistently. The only rule that holds true across all systems is that the genotype is a lower-level (i.e. less abstracted) encoding than the phenotype. A consequence of this rule is that there can generally be multiple genotypes that map to the same phenotype, but not the other way around. In some systems, there are really only the two levels of abstraction that you mention: the representation of a solution and the solution itself. In these cases, you are entirely correct that the former is the genotype and the latter is the phenotype.
This holds true for:
Simple genetic algorithms where the solution is encoded as a bitstring.
Simple evolutionary strategies problems, where a real-value vector is evolved and the numbers are plugged directly into a function which is being optimized
A variety of other systems where there is a direct mapping between solution encodings and solutions.
But as we get to more complex algorithms, this starts to break down. Consider a simple genetic program, in which we are evolving a mathematical expression tree. The number that the tree evaluates to depends on the input that it receives. So, while the genotype is clear (it's the series of nodes in the tree), the phenotype can only be defined with respect to specific inputs. That isn't really a big problem - we just select a set of inputs and define phenotype based on the set of corresponding outputs. But it gets worse.
As we continue to look at more complex algorithms, we reach cases where there are no longer just two levels of abstraction. Evolutionary algorithms are often used to evolve simple "brains" for autonomous agents. For instance, say we are evolving a neural network with NEAT. NEAT very clearly defines what the genotype is: a series of rules for constructing the neural network. And this makes sense - that it the lowest-level encoding of an individual in this system. Stanley, the creator of NEAT, goes on to define the phenotype as the neural network encoded by the genotype. Fair enough - that is indeed a more abstract representation. However, there are others who study evolved brain models that classify the neural network as the genotype and the behavior as the phenotype. That is also completely reasonable - the behavior is perhaps even a better phenotype, because it's the thing selection is actually based on.
Finally, we arrive at the systems with the least definable genotypes and phenotypes: open-ended artificial life systems. The goal of these systems is basically to create a rich world that will foster interesting evolutionary dynamics. Usually the genotype in these systems is fairly easy to define - it's the lowest level at which members of the population are defined. Perhaps it's a ring of assembly code, as in Avida, or a neural network, or some set of rules as in geb. Intuitively, the phenotype should capture something about what a member of the population does over its lifetime. But each member of the population does a lot of different things. So ultimately, in these systems, phenotypes tend to be defined differently based on what is being studied in a given experiment. While this may seem questionable at first, it is essentially how phenotypes are discussed in evolutionary biology as well. At some point, a system is complex enough that you just need to focus on the part you care about.

OO Design Quality Metrics

I'm reading a scientific paper about OO Design Quality Metrics written by Robert martin.
In his paper he describes "a set of metrics that can be used to measure the quality of an object-oriented design in terms of the interdependence between the subsystems of that design"
He goes on about how there should be a good balance between abstraction and instability. Here are the metrics he writes about and how they can be calculated:
Na: The number of concrete and abstract classes (and interfaces) in the package is an indicator of the extensibility of the package.
Afferent Couplings (Ca): The number of classes outside the package that depend upon classes within the package.
Efferent Couplings (Ce): The number of classes inside the package that depend upon classes outside the package.
Abstractness (A): The ratio of the number of abstract classes (and interfaces) in the analyzed package to the total number of classes in the analyzed package. The range for this metric is 0 to 1, with A=0 indicating a completely concrete package and A=1 indicating a completely abstract package.
Instability (I): The ratio of efferent coupling (Ce) to total coupling (Ce + Ca) such that I = Ce / (Ce + Ca). This metric is an indicator of the package's resilience to change. The range for this metric is 0 to 1, with I=0 indicating a completely stable package and I=1 indicating a completely unstable package.
Distance from the Main Sequence (D): The perpendicular distance of a package from the idealized line A + I = 1. This metric is an indicator of the package's balance between abstractness and stability. A package squarely on the main sequence is optimally balanced with respect to its abstractness and stability. Ideal packages are either completely abstract and stable (x=0, y=1) or completely concrete and unstable (x=1, y=0). The range for this metric is 0 to 1, with D=0 indicating a package that is coincident with the main sequence and D=1 indicating a package that is as far from the main sequence as possible.
I made the following simple design.
I'm confuse about the last metric (D). If I calculate the metric D(D' in the picture), I get a negative value of -0.5. But if I read the description is says the value should be between 0 and 1. Also wikipedia states that for metric interfaces are also considered as abstract classes. But I can't make this up from the paper. Is this true?
Did I do something wrong? Is believe this design, although really small, isn't that bad right?
If D is "distance" then you should consider its absolute value, the formula in the paper has an absolute operator also... I'm not sure how you calculate the distance, or I misunderstood you.
About considering abstract class and interface I think both of them are mechanisms to provide an "Interface Framework", which means keeping dependencies in the interface level not the concrete classes... so I think it's safe to consider them the same thing despite some differences.

Object Oriented implementation of graph data structures

I have been reading quite a bit graph data structures lately, as I have intentions of writing my own UML tool. As far as I can see, what I want can be modeled as a simple graph consisting of vertices and edges. Vertices will have a few values, and will so best be represented as objects. Edges does not, as far as I can see, need to be neither directed or weighted, but I do not want to choose an implementation that makes it impossible to include such properties later on.
Being educated in pure object oriented programming, the first things that comes to my mind is representing vertices and edges by classes, like for example:
Class: Vertice
- Array arrayOfEdges;
- String name;
Class: Edge
- Vertice from;
- Vertice to;
This gives me the possibility to later introduce weights, direction, and so on. Now, when I read up on implementing graphs, it seems that this is a very uncommon solution. Earlier questions here on Stack Overflow suggests adjacency lists and adjacency matrices, but being completely new to graphs, I have a hard time understanding why that is better than my approach.
The most important aspects of my application is having the ability to easily calculate which vertice is clicked and moved, and the ability to add and remove vertices and edges between the vertices. Will this be easier to accomplish in one implementation over another?
My language of choice is Objective-C, but I do not believe that this should be of any significance.
Here are the two basic graph types along with their typical implementations:
Dense Graphs:
Adjacency Matrix
Incidence Matrix
Sparse Graphs:
Adjacency List
Incidence List
In the graph framework (closed source, unfortunately) that I've ben writing (>12k loc graph implementations + >5k loc unit tests and still counting) I've been able to implement (Directed/Undirected/Mixed) Hypergraphs, (Directed/Undirected/Mixed) Multigraphs, (Directed/Undirected/Mixed) Ordered Graphs, (Directed/Undirected/Mixed) KPartite Graphs, as well as all kinds of Trees, such as Generic Trees, (A,B)-Trees, KAry-Trees, Full-KAry-Trees, (Trees to come: VP-Trees, KD-Trees, BKTrees, B-Trees, R-Trees, Octrees, …).
And all without a single vertex or edge class. Purely generics. And with little to no redundant implementations**
Oh, and as if this wasn't enough they all exist as mutable, immutable, observable (NSNotification), thread-unsafe and thread-safe versions.
How? Through excessive use of Decorators.
Basically all graphs are mutable, thread-unsafe and not observable. So I use Decorators to add all kinds of flavors to them (resulting in no more than 35 classes, vs. 500+ if implemented without decorators, right now).
While I cannot give any actual code, my graphs are basically implemented via Incidence Lists by use of mainly NSMutableDictionaries and NSMutableSets (and NSMutableArrays for my ordered Trees).
My Undirected Sparse Graph has nothing but these ivars, e.g.:
NSMutableDictionary *vertices;
NSMutableDictionary *edges;
The ivar vertices maps vertices to adjacency maps of vertices to incident edges ({"vertex": {"vertex": "edge"}})
And the ivar edges maps edges to incident vertex pairs ({"edge": {"vertex", "vertex"}}), with Pair being a pair data object holding an edge's head vertex and tail vertex.
Mixed Sparse Graphs would have a slightly different mapping of adjascency/incidence lists and so would Directed Sparse Graphs, but you should get the idea.
A limitation of this implementation is, that both, every vertex and every edge needs to have an object associated with it. And to make things a bit more interesting(sic!) each vertex object needs to be unique, and so does each edge object. This is as dictionaries don't allow duplicate keys. Also, objects need to implement NSCopying. NSValueTransformers or value-encapsulation are a way to sidestep these limitation though (same goes for the memory overhead from dictionary key copying).
While the implementation has its downsides, there's a big benefit: immensive versatility!
There's hardly any type graph that I could think of that's impossible to archieve with what I already have. Instead of building each type of graph with custom built parts you basically go to your box of lego bricks and assemble the graphs just the way you need them.
Some more insight:
Every major graph type has its own Protocol, here are a few:
HypergraphProtocol
MultigraphProtocol [tagging protocol] (allows parallel edges)
GraphProtocol (allows directed & undirected edges)
UndirectedGraphProtocol [tagging protocol] (allows only undirected edges)
DirectedGraphProtocol [tagging protocol] (allows only directed edges)
ForestProtocol (allows sets of disjunct trees)
TreeProtocol (allows trees)
ABTreeProtocol (allows trees of a-b children per vertex)
FullKAryTreeProtocol [tagging protocol] (allows trees of either 0 or k children per vertex)
The protocol nesting implies inharitance (of both protocols, as well as implementations).
If there's anything else you'd like to get some mor insight, feel free to leave a comment.
Ps: To give credit where credit is due: Architecture was highly influenced by the
JUNG Java graph framework (55k+ loc).
Pps: Before choosing this type of implementation I had written a small brother of it with just undirected graphs, that I wanted to expand to also support directed graphs. My implementation was pretty similar to the one you are providing in your question. This is what gave my first (rather naïve) project an abrupt end, back then: Subclassing a set of inter-dependent classes in Objective-C and ensuring type-safety Adding a simple directedness to my graph cause my entire code to break apart. (I didn't even use the solution that I posted back then, as it would have just postponed the pain) Now with the generic implementation I have more than 20 graph flavors implemented, with no hacks at all. It's worth it.
If all you want is drawing a graph and being able to move its nodes on the screen, though, you'd be fine with just implementing a generic graph class that can then later on be extended to specific directedness, if needed.
An adjacency matrix will have a bit more difficulty than your object model in adding and removing vertices (but not edges), since this involves adding and removing rows and columns from a matrix. There are tricks you could use to do this, like keeping empty rows and columns, but it will still be a bit complicated.
When moving a vertex around the screen, the edges will also be moved. This also gives your object model a slight advantage, since it will have a list of connected edges and will not have to search through the matrix.
Both models have an inherent directedness to the edges, so if you want to have undirected edges, then you will have to do additional work either way.
I would say that overall there is not a whole lot of difference. If I were implementing this, I would probably do something similar to what you are doing.
If you're using Objective-C I assume you have access to Core Data which would be probably be a great place to start - I understand you're creating your own graph, the strength of Core Data being that it can do a lot of the checking you're talking about for free if you set up your schema properly

Is functional programming considered more "mathematical"? If so, why?

Every now and then, I hear someone saying things like "functional programming languages are more mathematical". Is it so? If so, why and how? Is, for instance, Scheme more mathematical than Java or C? Or Haskell?
I cannot define precisely what is "mathematical", but I believe you can get the feeling.
Thanks!
There are two common(*) models of computation: the Lambda Calculus (LC) model and the Turing Machine (TM) model.
Lambda Calculus approaches computation by representing it using a mathematical formalism in which results are produced through the composition of functions over a domain of types. LC is also related to Combinatory Logic, which is considered a more generalized approach to the same topic.
The Turing Machine model approaches computation by representing it as the manipulation of symbols stored on idealized storage using a body of basic operations (like addition, mutation, etc).
These different models of computation are the basis for different families of programming languages. Lambda Calculus has given rise to languages like ML, Scheme, and Haskell. The Turing Model has given rise to C, C++, Pascal, and others. As a generalization, most functional programming languages have a theoretical basis in lambda calculus.
Due to the nature of Lambda Calculus, certain proofs are possible about the behavior of systems built on its principles. In fact, provability (ie correctness) is an important concept in LC, and makes possible certain kinds of reasoning and conclusions about LC systems. LC is also related to (and relies on) type theory and category theory.
By contrast, Turing models rely less on type theory and more on structuring computation as a series of state transitions in the underlying model. Turing Machine models of computation are more difficult to make assertions about and do not lend themselves to the same kinds of mathematical proofs and manipulation that LC-based programs do. However, this does not mean that no such analysis is possible - some important aspects of TM models is used when studying virtualization and static analysis of programs.
Because functional programming relies on careful selection of types and transformation between types, FP can be perceived as more "mathematical".
(*) Other models of computation exist as well, but they are less relevant to this discussion.
Pure functional programming languages are examples of a functional calculus and so in theory programs written in a functional language can be reasoned about in a mathematical sense. Ideally you'd like to be able to 'prove' the program is correct.
In practice such reasoning is very hard except in trivial cases, but it's still possible to some degree. You might be able to prove certain properties of the program, for example you might be able to prove that given all numeric inputs to the program, the output is always constrained within a certain range.
In non-functional languages with mutable state and side effects attempts to reason about a program and 'prove' correctness are all but impossible, at the moment at least. With non-functional programs you can think through the program and convince yourself parts of it are correct, and you can run unit tests that test certain inputs, but it's usually not possible to construct rigorous mathematical proofs about the behaviour of the program.
I think one major reason is that pure functional languages have no side effects, i.e. no mutable state, they only map input parameters to result values, which is just what a mathematical function does.
The logic structures of functional programming is heavily based on lambda calculus. While it may not appear to be mathematical based solely on algebraic forms of math, it is written very easily from discrete mathematics.
In comparison to imperative programming, it doesn't prescribe exactly how to do something, but what must be done. This reflects topology.
The mathematical feel of functional programming languages comes from a few different features. The most obvious is the name; "functional", i.e. using functions, which are fundamental to math. The other significant reason is that functional programming involves defining a collection of things that will always be true, which by their interactions achieve the desired computation -- this is similar to how mathematical proofs are done.

graphic imaginary numbers with vb.net

anyone have experience doing this? when i say imaginary i mean the square root of negative one. how would i graph this?
http://www.wolframalpha.com/input/?i=sqrt(-1)
Or more specifically, http://www.wolframalpha.com/input/?i=plot+sqrt(-1)
Complex numbers have many applications. They are useful for being able to store two properties (the real and imaginary parts) that behave sensibly when you apply standard math operators on them, like multiplication. Many problems become easy to solve by transforming them to the complex number domain, perform an operation on them that is easy to calculate, then transforming them back.
A good example is calculating the behavior of an electronic circuit that has reactive components. The impedance of a coil in the complex domain is jwL, of a capacitor is 1/jwC (w = omega). Driven with a signal in the complex domain, you can easily calculate the response. In this particular case, graphing the response is meaningful by mapping the real part on the X-axis and the imaginary part on the Y-axis. The length of the vector is the amplitude, the angle is the phase.
The Laplace transform is another complex domain transformation, based on Euler's identity. It has a very useful graphical representation too, plotting the complex roots of the equation within the unity circle allows predicting the stability of a feedback system.
These kind of transforms are popular because they simplify the math or their graphical representation are easy to interpret. Whether yours are equally useful really depends on what the transform does.