Where do the input_ids, input_mask, and segment_ids variables come from in a BERT model? - tensorflow

I'm trying to work through the Google BERT tutorial in Google Colab, and am having a hard time following some of its steps.
Specifically, there is a function called create_model which reads like this:
def create_model(is_predicting, input_ids, input_mask, segment_ids, labels,
num_labels):
"""Creates a classification model."""
bert_module = hub.Module(
BERT_MODEL_HUB,
trainable=True)
bert_inputs = dict(
input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids)
bert_outputs = bert_module(
inputs=bert_inputs,
signature="tokens",
as_dict=True)
# Use "pooled_output" for classification tasks on an entire sentence.
# Use "sequence_outputs" for token-level output.
output_layer = bert_outputs["pooled_output"]
hidden_size = output_layer.shape[-1].value
# Create our own layer to tune for politeness data.
output_weights = tf.get_variable(
"output_weights", [num_labels, hidden_size],
initializer=tf.truncated_normal_initializer(stddev=0.02))
output_bias = tf.get_variable(
"output_bias", [num_labels], initializer=tf.zeros_initializer())
with tf.variable_scope("loss"):
# Dropout helps prevent overfitting
output_layer = tf.nn.dropout(output_layer, keep_prob=0.9)
logits = tf.matmul(output_layer, output_weights, transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
log_probs = tf.nn.log_softmax(logits, axis=-1)
# Convert labels into one-hot encoding
one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32)
predicted_labels = tf.squeeze(tf.argmax(log_probs, axis=-1, output_type=tf.int32))
# If we're predicting, we want predicted labels and the probabiltiies.
if is_predicting:
return (predicted_labels, log_probs)
# If we're train/eval, compute loss between predicted and actual label
per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
loss = tf.reduce_mean(per_example_loss)
return (loss, predicted_labels, log_probs)
This would be fine, but when I look for where the create_model function is called in the notebook, the origin of the input_ids, input_mask and segment_ids arguments is not clear to me.
This is where the function is referenced later on in the notebook:
def model_fn_builder(num_labels, learning_rate, num_train_steps,
num_warmup_steps):
"""Returns `model_fn` closure for TPUEstimator."""
def model_fn(features, labels, mode, params): # pylint: disable=unused-argument
"""The `model_fn` for TPUEstimator."""
input_ids = features["input_ids"]
input_mask = features["input_mask"]
segment_ids = features["segment_ids"]
label_ids = features["label_ids"]
is_predicting = (mode == tf.estimator.ModeKeys.PREDICT)
# TRAIN and EVAL
if not is_predicting:
(loss, predicted_labels, log_probs) = create_model(
is_predicting, input_ids, input_mask, segment_ids, label_ids, num_labels)
The problem here is that the features argument is not listed as an argument in the parent function, and it's not defined anywhere else in the notebook. So I'm not sure why it works, and even more importantly, I'm not sure what things like features['input_ids'] are supposed to represent. Without this being clear to me, it'll be difficult to make sense of what BERT actually does.
Thank you for your help.

Related

sklearn classification_report ValueError: Found input variables with inconsistent numbers of samples: [18, 576]

I'm working on a CNN classification problem. I used keras and a pre-trained model. Now I want to evaluate my model and need the precision, recall and f1-Score. When I use sklearn.metrics classification_report I get above error. I know where the numbers are coming from, first is the length of my test dataset in batches and second are the number of actual sampels (predictions) in there. However I don't know how to "convert" them.
See my code down below:
# load train_ds
train_ds = tf.keras.utils.image_dataset_from_directory(
directory ='/gdrive/My Drive/Flies_dt/224x224',
image_size = (224, 224),
validation_split = 0.40,
subset = "training",
seed = 123,
shuffle = True)
# load val_ds
val_ds = tf.keras.utils.image_dataset_from_directory(
directory ='/gdrive/My Drive/Flies_dt/224x224',
image_size = (224, 224),
validation_split = 0.40,
subset = "validation",
seed = 123,
shuffle = True)
# move some batches of val_ds to test_ds
test_ds = val_ds.take((1*len(val_ds)) // 2)
print('test_ds =', len(test_ds))
val_ds = val_ds.skip((1*len(val_ds)) // 2)
print('val_ds =', len(val_ds)) #test_ds = 18 val_ds = 18
# Load Model
base_model = keras.applications.vgg19.VGG19(
include_top=False,
weights='imagenet',
input_shape=(224,224,3)
)
# Freeze base_model
base_model.trainable = False
#
inputs = keras.Input(shape=(224,224,3))
x = data_augmentation(inputs) #apply data augmentation
# Preprocessing
x = tf.keras.applications.vgg19.preprocess_input(x)
# The base model contains batchnorm layers. We want to keep them in inference mode
# when we unfreeze the base model for fine-tuning, so we make sure that the
# base_model is running in inference mode here.
x = base_model(x, training=False)
x = keras.layers.GlobalAveragePooling2D()(x)
x = keras.layers.Dropout(0.2)(x) # Regularize with dropout
outputs = keras.layers.Dense(5, activation="softmax")(x)
model = keras.Model(inputs, outputs)
model.compile(
loss="sparse_categorical_crossentropy",
optimizer="Adam",
metrics=['acc']
)
model.fit(train_ds, epochs=8, validation_data=val_ds, callbacks=[tensorboard_callback])
# Unfreeze the base_model. Note that it keeps running in inference mode
# since we passed `training=False` when calling it. This means that
# the batchnorm layers will not update their batch statistics.
# This prevents the batchnorm layers from undoing all the training
# we've done so far.
base_model.trainable = True
model.summary()
model.compile(
optimizer=keras.optimizers.Adam(learning_rate=0.000001), # Low learning rate
loss="sparse_categorical_crossentropy",
metrics=['acc']
)
model.fit(train_ds, epochs=5, validation_data=val_ds)
#Evaluate
from sklearn.metrics import classification_report
y_pred = model.predict(test_ds, batch_size=64, verbose=1)
y_pred_bool = np.argmax(y_pred, axis=1)
print(classification_report(test_ds, y_pred_bool))
I also tried something like this, but I'm not sure if this gives me the correct values for multiclass classification.
from keras import backend as K
def recall_m(y_true, y_pred):
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
recall = true_positives / (possible_positives + K.epsilon())
return recall
def precision_m(y_true, y_pred):
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))
precision = true_positives / (predicted_positives + K.epsilon())
return precision
def f1_m(y_true, y_pred):
precision = precision_m(y_true, y_pred)
recall = recall_m(y_true, y_pred)
return 2*((precision*recall)/(precision+recall+K.epsilon()))
# compile the model
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['acc',f1_m,precision_m, recall_m])
# fit the model
history = model.fit(Xtrain, ytrain, validation_split=0.3, epochs=10, verbose=0)
# evaluate the model
loss, accuracy, f1_score, precision, recall = model.evaluate(Xtest, ytest, verbose=0)
This is a lot, Sorry. Hope somebody can help.

BERT Model Fine Tuning and migrating to TF2

I executed this excellent tutorial:
https://towardsdatascience.com/building-a-multi-label-text-classifier-using-bert-and-tensorflow-f188e0ecdc5d
I understood most of it except where model is being created. I would like to know it and migrate to TF2 bert.
When he says "Basically we load the pre-trained model and then train the last layer for classification task.", does it mean that he is freezing all the other layers and fine-tuning the last layer? This is the relevant code (in TF1) which I am not able to understand:
def create_model(bert_config, is_training, input_ids, input_mask, segment_ids,
labels, num_labels, use_one_hot_embeddings):
"""Creates a classification model."""
model = modeling.BertModel(
config=bert_config,
is_training=is_training,
input_ids=input_ids,
input_mask=input_mask,
token_type_ids=segment_ids,
use_one_hot_embeddings=use_one_hot_embeddings)
output_layer = model.get_pooled_output()
hidden_size = output_layer.shape[-1].value
output_weights = tf.get_variable(
"output_weights", [num_labels, hidden_size],
initializer=tf.truncated_normal_initializer(stddev=0.02))
output_bias = tf.get_variable(
"output_bias", [num_labels], initializer=tf.zeros_initializer())
with tf.variable_scope("loss"):
if is_training:
# I.e., 0.1 dropout
output_layer = tf.nn.dropout(output_layer, keep_prob=0.9)
logits = tf.matmul(output_layer, output_weights, transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
# probabilities = tf.nn.softmax(logits, axis=-1) ### multiclass case
probabilities = tf.nn.sigmoid(logits)#### multi-label case
labels = tf.cast(labels, tf.float32)
tf.logging.info("num_labels:{};logits:{};labels:{}".format(num_labels, logits, labels))
per_example_loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=labels, logits=logits)
loss = tf.reduce_mean(per_example_loss)
return (loss, per_example_loss, logits, probabilities)
I went through the TF2 fine tuning tutorials for BERT, but how do I achieve the same? I am able to train other models where step 1 is not required.
Use the official bert example :
https://www.tensorflow.org/tutorials/text/classify_text_with_bert

Similar Keras code for a tensorflow model

The following code is a tensorflow code to create a model. It would be really helpful for me to have the exact alternative keras implementation of this code:
logits = tf.matmul(output_layer, output_weights, transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
probabilities = tf.nn.softmax(logits, axis=-1)
log_probs = tf.nn.log_softmax(logits, axis=-1)
one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32)
per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
loss = tf.reduce_mean(per_example_loss)
Specially i'm confused about loss and optimizer, what kind of loss is used here. Can the following code be an alternative in keras:
sequence_input = Input(shape=(768,), dtype='float32')
preds = Dense(2, activation='softmax')(sequence_input)
model = Model(sequence_input, preds)
model.compile(loss='binary_crossentropy',optimizer='adam',metrics=['acc'])

Tensorflow multi-label with NCE or sampled softmax

Are there any code examples for using Tensorflow's sampled_softmax_loss or nce_loss functions with multi-label problems? That is, where num_true is more than one?
What follows is my attempt to create a wrapper for nce_loss() and sampled_softmax_loss() based Jeff Chao's work (https://github.com/joelthchao/keras). In the following code, if you change num_true to 1, both samplers work. But with num_true > 1, both samplers throw slightly different exceptions involving tensor shape.
The main program is a simple autoencoder that replicates the class of problem I'm trying to solve: multi-label testing with a huge number of output classes, with a Zipfian distribution. Comments and stack trace at the end.
import tensorflow as tf
import numpy as np
import keras.layers as layers
from keras.models import Model
from keras import backend as K
from keras import initializers,regularizers,constraints
from keras.models import Model
from keras.layers import Dense
from keras.engine.base_layer import InputSpec
from keras.engine.topology import Layer
from keras.engine.input_layer import Input
from tensorflow.keras.optimizers import Nadam, Adam
np.random.seed(10)
import random
def nce_loss_function(weights, biases, labels, inputs, num_sampled, num_classes, num_true):
if K.learning_phase() == 1:
loss = tf.nn.nce_loss(weights, biases, labels, inputs, num_sampled, num_classes, num_true,
partition_strategy="div")
else:
logits = tf.matmul(inputs, tf.transpose(weights))
logits = tf.nn.bias_add(logits, biases)
labels_one_hot = tf.one_hot(labels, num_classes)
loss = tf.nn.sigmoid_cross_entropy_with_logits(
labels=labels_one_hot[:][0][:],
logits=logits)
loss = tf.reduce_sum(loss, axis=1)
return loss
def sampled_softmax_loss_function(weights, biases, labels, inputs, num_sampled, num_classes, num_true):
if K.learning_phase() == 1:
return tf.nn.sampled_softmax_loss(weights, biases, labels, inputs, num_sampled, num_classes, num_true,
partition_strategy="div")
else:
logits = tf.matmul(inputs, tf.transpose(weights))
logits = tf.nn.bias_add(logits, biases)
labels_one_hot = tf.one_hot(labels, num_classes)
loss = tf.nn.softmax_cross_entropy_with_logits_v2(
labels=labels_one_hot,
logits=logits)
return loss
class Sampling(Layer):
"""Regular densely-connected NN layer with various sampling Loss.
`Sampling` implements the operation:
`output = dot(input, kernel) + bias`
`kernel` is a weights matrix created by the layer, and `bias` is a bias vector
created by the layer. Also, it adds a sampling Loss to the model.
See [reference](http://proceedings.mlr.press/v9/gutmann10a/gutmann10a.pdf).
# Example
```python
inputs = Input(shape=(4,))
target = Input(shape=(1,)) # sparse format, e.g. [1, 3, 2, 6, ...]
net = Dense(8)(inputs)
net = Sampling(units=128, num_sampled=32)([net, target])
model = Model(inputs=[inputs, target], outputs=net)
model.compile(optimizer='adam', loss=None)
x = np.random.rand(1000, 4)
y = np.random.randint(128, size=1000)
model.fit([x, y], None)
```
# Arguments
units: Positive integer, dimensionality of the output space (num classes).
num_sampled: Positive integer, number of classes to sample in Sampling Loss.
type: 'sampled_softmax', 'nce'
num_true: Max # of positive classes, pad to this for variable inputs
kernel_initializer: Initializer for the `kernel` weights matrix
(see [initializers](../initializers.md)).
bias_initializer: Initializer for the bias vector
(see [initializers](../initializers.md)).
kernel_regularizer: Regularizer function applied to
the `kernel` weights matrix
(see [regularizer](../regularizers.md)).
bias_regularizer: Regularizer function applied to the bias vector
(see [regularizer](../regularizers.md)).
activity_regularizer: Regularizer function applied to
the output of the layer (its "activation").
(see [regularizer](../regularizers.md)).
kernel_constraint: Constraint function applied to
the `kernel` weights matrix
(see [constraints](../constraints.md)).
bias_constraint: Constraint function applied to the bias vector
(see [constraints](../constraints.md)).
# Input shape
Two tensors. First one is 2D tensor with shape: `(batch_size, input_dim)`.
Second one is 1D tensor with length `batch_size`
# Output shape
2D tensor with shape: `(batch_size, units)`.
For instance, for a 2D input with shape `(batch_size, input_dim)`,
the output would have shape `(batch_size, units)`.
"""
def __init__(self,
units,
num_sampled,
type='sampled_softmax',
num_true=1,
kernel_initializer='glorot_uniform',
bias_initializer='zeros',
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
**kwargs):
if 'input_shape' not in kwargs and 'input_dim' in kwargs:
kwargs['input_shape'] = (kwargs.pop('input_dim'),)
super(Sampling, self).__init__(**kwargs)
self.units = units
self.num_sampled = num_sampled
if self.num_sampled > self.units:
raise Exception('num_sample: {} cannot be greater than units: {}'.format(
num_sampled, units))
self.type = type
if not (self.type == 'nce' or self.type == 'sampled_softmax'):
raise Exception('type {} is not a valid sampling loss type'.format(type))
self.num_true = num_true
self.kernel_initializer = initializers.get(kernel_initializer)
self.bias_initializer = initializers.get(bias_initializer)
self.kernel_regularizer = regularizers.get(kernel_regularizer)
self.bias_regularizer = regularizers.get(bias_regularizer)
self.activity_regularizer = regularizers.get(activity_regularizer)
self.kernel_constraint = constraints.get(kernel_constraint)
self.bias_constraint = constraints.get(bias_constraint)
self.input_spec = [InputSpec(min_ndim=2), InputSpec(min_ndim=1)]
self.supports_masking = True
def build(self, input_shape):
assert len(input_shape) == 2
input_dim = input_shape[0][-1]
self.kernel = self.add_weight(shape=(input_dim, self.units),
initializer=self.kernel_initializer,
name='kernel',
regularizer=self.kernel_regularizer,
constraint=self.kernel_constraint)
self.bias = self.add_weight(shape=(self.units,),
initializer=self.bias_initializer,
name='bias',
regularizer=self.bias_regularizer,
constraint=self.bias_constraint)
self.input_spec[0] = InputSpec(min_ndim=2, axes={-1: input_dim})
self.built = True
def call(self, inputs):
pred, target = inputs
output = K.dot(pred, self.kernel)
output = K.bias_add(output, self.bias, data_format='channels_last')
# TODO : check train or test mode
if self.type == 'nce':
nce_loss = nce_loss_function(
K.transpose(self.kernel), self.bias, target, pred, self.num_sampled, self.units, self.num_true)
self.add_loss(K.mean(nce_loss))
else:
sampled_softmax_loss = sampled_softmax_loss_function(
K.transpose(self.kernel), self.bias, target, pred, self.num_sampled, self.units, self.num_true)
self.add_loss(K.mean(sampled_softmax_loss))
return output
def compute_output_shape(self, input_shape):
assert input_shape and len(input_shape) == 2
assert input_shape[0][-1]
output_shape = list(input_shape[0])
output_shape[-1] = self.units
return tuple(output_shape)
def get_config(self):
config = {
'units': self.units,
'num_sampled': self.num_sampled,
'kernel_initializer': initializers.serialize(self.kernel_initializer),
'bias_initializer': initializers.serialize(self.bias_initializer),
'kernel_regularizer': regularizers.serialize(self.kernel_regularizer),
'bias_regularizer': regularizers.serialize(self.bias_regularizer),
'activity_regularizer': regularizers.serialize(self.activity_regularizer),
'kernel_constraint': constraints.serialize(self.kernel_constraint),
'bias_constraint': constraints.serialize(self.bias_constraint)
}
base_config = super(Sampling, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
def fill_zipf(length, num_classes, num_true=1):
data_onehot = np.zeros((length, num_classes), dtype='float32')
data_labels = np.zeros((length, num_true), dtype='int32')
# all indexes outside of num_classes scattered in existing space
rand = np.random.zipf(1.3, length * num_true) % num_classes
for i in range(length):
for j in range(num_true):
k = rand[i]
data_onehot[i][k] = 1.0
data_labels[i][j] = k
return data_onehot, data_labels
# number of test samples
num_train = 32*500
num_test = 32*500
num_valid = 100
num_epochs = 5
num_hidden = 10
# number of classes
num_classes = 2000
# number of samples for NCE
num_sampled = 24
# number of labels
num_true = 1
# type of negative sampler
sampler_type='sampled_softmax'
inputs = Input(shape=(num_classes,))
target = Input(shape=(num_true,), dtype=tf.int32) # sparse format, e.g. [1, 3, 2, 6, ...]
net = Dense(num_classes)(inputs)
net = Dense(num_hidden, activation='relu')(net)
net = Sampling(units=num_classes, num_sampled=num_sampled, type=sampler_type)([net, target])
model = Model(inputs=[inputs, target], outputs=net)
model.compile(optimizer='adam', loss=None, metrics=['binary_crossentropy'])
model.summary()
train_input, train_output = fill_zipf(num_train, num_classes, num_true)
valid_input, valid_output = fill_zipf(num_valid, num_classes, num_true)
history = model.fit([train_input, train_output], None,
validation_data=([valid_input, valid_output], None),
epochs=num_epochs, verbose=2)
test_input, test_output = fill_zipf(num_test, num_classes, num_true)
predicts = model.predict([test_input, test_output], batch_size=32)
count = 0
for test in range(num_test):
pred = predicts[test]
imax = np.argmax(pred)
if imax == test_output[test]:
count += 1
print("Found {0} out of {1}".format(count/num_true, num_test))
This test works for the single-label case, both 'nce' and 'sampled_softmax'. But, when I set num_true to greater than one, both NCE and Sampled Softmax throw a tensor mismatch exception.
num_true=3
width=2000
sampler_type='sampled_softmax'
With these parameters, for Sampled Softmax, the code throws this exception trace:
File "postable_sampling_tests.py", line 220, in <module>
epochs=num_epochs, verbose=2)
File "/opt/ds/lib/python3.6/site-packages/keras/engine/training.py", line 1039, in fit
validation_steps=validation_steps)
File "/opt/ds/lib/python3.6/site-packages/keras/engine/training_arrays.py", line 199, in fit_loop
outs = f(ins_batch)
File "/opt/ds/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py", line 2715, in __call__
return self._call(inputs)
File "/opt/ds/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py", line 2675, in _call
fetched = self._callable_fn(*array_vals)
File "/opt/ds/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1399, in __call__
run_metadata_ptr)
File "/opt/ds/lib/python3.6/site-packages/tensorflow/python/framework/errors_impl.py", line 526, in __exit__
c_api.TF_GetCode(self.status.status))
tensorflow.python.framework.errors_impl.InvalidArgumentError: logits and labels must be broadcastable: logits_size=[32,2000] labels_size=[96,2000]
[[{{node sampling_1/softmax_cross_entropy_with_logits}} = SoftmaxCrossEntropyWithLogits[T=DT_FLOAT, _class=["loc:#train...s_grad/mul"], _device="/job:localhost/replica:0/task:0/device:CPU:0"](sampling_1/BiasAdd_1, sampling_1/softmax_cross_entropy_with_logits/Reshape_1)]]
32 is the batch_size. Clearly, something is num_true * batch_size but I don't know how to fix this.
If we change the sampler to NCE:
num_true=3
width=2000
sampler_type='nce'
The final two lines of the exception stack:
tensorflow.python.framework.errors_impl.InvalidArgumentError: Incompatible shapes: [32,2000] vs. [3,2000]
[[{{node sampling_1/logistic_loss/mul}} = Mul[T=DT_FLOAT, _class=["loc:#training/Adam/gradients/sampling_1/logistic_loss/mul_grad/Reshape"], _device="/job:localhost/replica:0/task:0/device:CPU:0"](sampling_1/BiasAdd_1, sampling_1/strided_slice_2)]]
In this case, the labels have not been multiplied by batch_size.
What am I doing wrong? How can I get this wrapper system working for multi-label cases?
You can also use samples softmax with multiple labels, you just have to take the mean of each samples softmax
embeddings = tf.get_variable( 'embeddings',
initializer= tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0))
softmax_weights = tf.get_variable( 'softmax_weights',
initializer= tf.truncated_normal([vocabulary_size, embedding_size],
stddev=1.0 / math.sqrt(embedding_size)))
softmax_biases = tf.get_variable('softmax_biases',
initializer= tf.zeros([vocabulary_size]), trainable=False )
embed = tf.nn.embedding_lookup(embeddings, train_dataset) #train data set is
embed_reshaped = tf.reshape( embed, [batch_size*num_inputs, embedding_size] )
segments= np.arange(batch_size).repeat(num_inputs)
averaged_embeds = tf.segment_mean(embed_reshaped, segments, name=None)
loss = tf.reduce_mean(
tf.nn.sampled_softmax_loss(weights=softmax_weights, biases=softmax_biases, inputs=averaged_embeds,
labels=train_labels, num_sampled=num_sampled, num_classes=vocabulary_size))
optimizer = tf.train.AdagradOptimizer(1.0).minimize(loss) #Original learning rate was 1.0
from
https://github.com/Santosh-Gupta/Research2Vec/blob/master/Research2VecTraining2.ipynb

Issue exporting trained Tensorflow model parameters to SavedModel format

I have built a system that leverages Google ML Engine to train various text classifiers using a simple flat CNN architecture (borrowed from the excellent WildML post). I've also leveraged heavily the ML Engine trainer template which exists here - specifically using the Tensorflow core functions.
My issue is that while the model trains and learns parameters correctly, I cannot get the serialized export in the binary SavedModel format (i.e. - the .pb files) to maintain the learned weights. I can tell this by using the gcloud predict local API on the model export folder and each time it makes randomized predictions - leading me to believe that while the graph structure is being saved to the proto-buf format, the associated weights in the checkpoint file are not being carried over.
Here's the code for my run function:
def run(...):
# ... code to load and transform train/test data
with train_graph.as_default():
with tf.Session(graph=train_graph).as_default() as session:
# Features and label tensors as read using filename queue
features, labels = model.input_fn(
x_train,
y_train,
num_epochs=num_epochs,
batch_size=train_batch_size
)
# Returns the training graph and global step tensor
tf.logging.info("Train vocab size: {:d}".format(vocab_size))
train_op, global_step_tensor, cnn, train_summaries = model.model_fn(
model.TRAIN,
sequence_length,
num_classes,
label_values,
vocab_size,
embedding_size,
filter_sizes,
num_filters
)
tf.logging.info("Created simple training CNN with ({}) filter types".format(filter_sizes))
# Setup writers
train_summary_op = tf.summary.merge(train_summaries)
train_summary_dir = os.path.join(job_dir, "summaries", "train")
# Generate writer
train_summary_writer = tf.summary.FileWriter(train_summary_dir, session.graph)
# Initialize all variables
session.run(tf.global_variables_initializer())
session.run(tf.local_variables_initializer())
model_dir = os.path.abspath(os.path.join(job_dir, "model"))
if not os.path.exists(model_dir):
os.makedirs(model_dir)
saver = tf.train.Saver()
def train_step(x_batch, y_batch):
"""
A single training step
"""
feed_dict = {
cnn.input_x: x_batch,
cnn.input_y: y_batch,
cnn.dropout_keep_prob: 0.5
}
step, _, loss, accuracy = session.run([global_step_tensor, train_op, cnn.loss, cnn.accuracy],
feed_dict=feed_dict)
time_str = datetime.datetime.now().isoformat()
if step % 10 == 0:
tf.logging.info("{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))
# Return current step
return step
def eval_step(x_batch, y_batch, train_step, total_steps):
"""
Evaluates model on a dev set
"""
feed_dict = {
cnn.input_x: x_batch,
cnn.input_y: y_batch,
cnn.dropout_keep_prob: 1.0
}
step, loss, accuracy, scores, predictions = session.run([global_step_tensor, cnn.loss, cnn.accuracy, cnn.scores, cnn.predictions],
feed_dict=feed_dict)
# Get metrics
y_actual = np.argmax(y_batch, 1)
model_metrics = precision_recall_fscore_support(y_actual, predictions)
#print(scores)
time_str = datetime.datetime.now().isoformat()
print("\n---- EVAULATION ----")
avg_precision = np.mean(model_metrics[0], axis=0)
avg_recall = np.mean(model_metrics[1], axis=0)
avg_f1 = np.mean(model_metrics[2], axis=0)
print("{}: step {}, loss {:g}, acc {:g}, prec {:g}, rec {:g}, f1 {:g}".format(time_str, step, loss, accuracy, avg_precision, avg_recall, avg_f1))
print("Model metrics: ", model_metrics)
print("---- EVALUATION ----\n")
# Generate batches
batches = data_helpers.batch_iter(
list(zip(features, labels)), train_batch_size, num_epochs)
# Training loop. For each batch...
for batch in batches:
x_batch, y_batch = zip(*batch)
current_step = train_step(x_batch, y_batch)
if current_step % 20 == 0 or current_step == 1:
eval_step(x_eval, y_eval, current_step, total_steps)
# Checkpoint directory. Tensorflow assumes this directory already exists so we need to create it
print(model_dir)
trained_model = saver.save(session, os.path.join(job_dir, 'model') + "/model.ckpt", global_step=current_step)
print(trained_model)
print("Saved final model checkpoint to {}".format(trained_model))
# Only perform this if chief
if is_chief:
build_and_run_exports(trained_model, job_dir,
model.SERVING_INPUT_FUNCTIONS[model.TEXT],
sequence_length, num_classes, label_values,
vocab_size, embedding_size, filter_sizes,
num_filters, vocab_processor)
And my build_and_run_exports function:
def build_and_run_exports(...):
# Check if we export already exists - if so delete
export_dir = os.path.join(job_dir, 'export')
if os.path.exists(export_dir):
print("Export currently exists - going to delete:", export_dir)
shutil.rmtree(export_dir)
# Create exporter
exporter = tf.saved_model.builder.SavedModelBuilder(export_dir)
# Restore prediction graph
prediction_graph = tf.Graph()
with prediction_graph.as_default():
with tf.Session(graph=prediction_graph) as session:
# Get training data
features, inputs_dict = serving_input_fn()
# Setup inputs
inputs_info = {
name: tf.saved_model.utils.build_tensor_info(tensor)
for name, tensor in inputs_dict.iteritems()
}
# Load model
cnn = TextCNN(
sequence_length=sequence_length,
num_classes=num_classes,
vocab_size=vocab_size,
embedding_size=embedding_size,
filter_sizes=list(map(int, filter_sizes.split(","))),
num_filters=num_filters,
input_tensor=features)
# Restore model
saver = tf.train.Saver()
saver.restore(session, latest_checkpoint)
# Setup outputs
outputs = {
'logits': cnn.scores,
'probabilities': cnn.probabilities,
'predicted_indices': cnn.predictions
}
# Create output info
output_info = {
name: tf.saved_model.utils.build_tensor_info(tensor)
for name, tensor in outputs.iteritems()
}
# Setup signature definition
signature_def = tf.saved_model.signature_def_utils.build_signature_def(
inputs=inputs_info,
outputs=output_info,
method_name=sig_constants.PREDICT_METHOD_NAME
)
# Create graph export
exporter.add_meta_graph_and_variables(
session,
tags=[tf.saved_model.tag_constants.SERVING],
signature_def_map={
sig_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: signature_def
},
legacy_init_op=tf.saved_model.main_op.main_op()
)
# Export model
exporter.save()
And last, but not least, the TextCNN model:
class TextCNN(object):
"""
A CNN for text classification.
Uses an embedding layer, followed by a convolutional, max-pooling and softmax layer.
"""
def __init__(
self, sequence_length, num_classes, vocab_size,
embedding_size, filter_sizes, num_filters, l2_reg_lambda=0.0,
dropout_keep_prob=0.5, input_tensor=None):
# Setup input
if input_tensor != None:
self.input_x = input_tensor
self.dropout_keep_prob = tf.constant(1.0)
else:
self.input_x = tf.placeholder(tf.int32, [None, sequence_length], name="input_x")
self.dropout_keep_prob = tf.placeholder(tf.float32, name="dropout_keep_prob")
# Placeholders for input, output and dropout
self.input_y = tf.placeholder(tf.int32, [None, num_classes], name="input_y")
# Keeping track of l2 regularization loss (optional)
l2_loss = tf.constant(0.0)
# Embedding layer
with tf.device('/cpu:0'), tf.name_scope("embedding"):
self.W = tf.Variable(
tf.random_uniform([vocab_size, embedding_size], -1.0, 1.0),
name="W")
self.embedded_chars = tf.nn.embedding_lookup(self.W, self.input_x)
self.embedded_chars_expanded = tf.expand_dims(self.embedded_chars, -1)
# Create a convolution + maxpool layer for each filter size
pooled_outputs = []
for i, filter_size in enumerate(filter_sizes):
with tf.name_scope("conv-maxpool-%s" % filter_size):
# Convolution Layer
filter_shape = [filter_size, embedding_size, 1, num_filters]
W = tf.Variable(tf.truncated_normal(filter_shape, stddev=0.1), name="W")
b = tf.Variable(tf.constant(0.1, shape=[num_filters]), name="b")
conv = tf.nn.conv2d(
self.embedded_chars_expanded,
W,
strides=[1, 1, 1, 1],
padding="VALID",
name="conv")
# Apply nonlinearity
h = tf.nn.relu(tf.nn.bias_add(conv, b), name="relu")
# Maxpooling over the outputs
pooled = tf.nn.max_pool(
h,
ksize=[1, sequence_length - filter_size + 1, 1, 1],
strides=[1, 1, 1, 1],
padding='VALID',
name="pool")
pooled_outputs.append(pooled)
# Combine all the pooled features
num_filters_total = num_filters * len(filter_sizes)
self.h_pool = tf.concat(pooled_outputs, 3)
self.h_pool_flat = tf.reshape(self.h_pool, [-1, num_filters_total])
# Add dropout
with tf.name_scope("dropout"):
self.h_drop = tf.nn.dropout(self.h_pool_flat, self.dropout_keep_prob)
# Final (unnormalized) scores and predictions
with tf.name_scope("output"):
W = tf.get_variable(
"W",
shape=[num_filters_total, num_classes],
initializer=tf.contrib.layers.xavier_initializer())
b = tf.Variable(tf.constant(0.1, shape=[num_classes]), name="b")
l2_loss += tf.nn.l2_loss(W)
l2_loss += tf.nn.l2_loss(b)
self.scores = tf.nn.xw_plus_b(self.h_drop, W, b, name="scores")
self.predictions = tf.argmax(self.scores, 1, name="predictions")
# CalculateMean cross-entropy loss
with tf.name_scope("loss"):
losses = tf.nn.softmax_cross_entropy_with_logits(logits=self.scores, labels=self.input_y)
self.loss = tf.reduce_mean(losses) + l2_reg_lambda * l2_loss
with tf.name_scope("probabilities"):
self.probabilities = tf.nn.softmax(logits=self.scores)
# Accuracy
with tf.name_scope("accuracy"):
correct_predictions = tf.equal(self.predictions, tf.argmax(self.input_y, 1))
self.accuracy = tf.reduce_mean(tf.cast(correct_predictions, "float"), name="accuracy")
I'm hoping I'm just missing something simple in how I'm creating the TF graph / session and restoring stats.
Thank you in advance for your help!
This behavior is caused due to the behavior of tf.saved_model.main_op.main_op() which randomly initializes all of the variables in the graph (code). However, legacy_init_op happens after the variables are restored from the checkpoint (restore happens here followed by legacy_init_op here).
The solution is simply to not re-initialize all of the variables, for example, in your code:
from tensorflow.python.ops import variables
from tensorflow.python.ops import lookup_ops
from tensorflow.python.ops import control_flow_ops
def my_main_op():
init_local = variables.local_variables_initializer()
init_tables = lookup_ops.tables_initializer()
return control_flow_ops.group(init_local, init_tables)
def build_and_run_exports(...):
...
# Create graph export
exporter.add_meta_graph_and_variables(
session,
tags=[tf.saved_model.tag_constants.SERVING],
signature_def_map={
sig_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: signature_def
},
legacy_init_op=my_main_op()
)
# Export model
exporter.save()