Concept of default headers in mule - mule

I want to understand the concept of default header in mule.I want to hit a get api call[the code is written in java] from mule and I am sending a token in the header, but I am setting the token in the default header inside the http request configuration.
<http:default-headers >
<http:default-header key="testing" value="#[vars.authorizationHeader]" />
</http:default-headers>
Will my java code be able to read this header from attributes ?

Default headers are just ones that will always be sent across all requests referencing that configuration, so yes, your server will get that token. However, it is not a good practice to use them along with expressions as you are doing because that makes the configuration very fragile (what if there's no such var in the request flow?) and force a new configuration to be used (as the expression must be resolved each time). Default headers make sense when you want to force a static header everywhere, for tracking purposes for example. If the header will be dynamic, then it's best to configure it on each request.

Related

axios get request with data passing though is not properly passing the data [duplicate]

I'm developing a new RESTful webservice for our application.
When doing a GET on certain entities, clients can request the contents of the entity.
If they want to add some parameters (for example sorting a list) they can add these parameters in the query string.
Alternatively I want people to be able to specify these parameters in the request body.
HTTP/1.1 does not seem to explicitly forbid this. This will allow them to specify more information, might make it easier to specify complex XML requests.
My questions:
Is this a good idea altogether?
Will HTTP clients have issues with using request bodies within a GET request?
https://www.rfc-editor.org/rfc/rfc2616
Roy Fielding's comment about including a body with a GET request.
Yes. In other words, any HTTP request message is allowed to contain a message body, and thus must parse messages with that in mind. Server semantics for GET, however, are restricted such that a body, if any, has no semantic meaning to the request. The requirements on parsing are separate from the requirements on method semantics.
So, yes, you can send a body with GET, and no, it is never useful to do so.
This is part of the layered design of HTTP/1.1 that will become clear again once the spec is partitioned (work in progress).
....Roy
Yes, you can send a request body with GET but it should not have any meaning. If you give it meaning by parsing it on the server and changing your response based on its contents, then you are ignoring this recommendation in the HTTP/1.1 spec, section 4.3:
...if the request method does not include defined semantics for an entity-body, then the message-body SHOULD be ignored when handling the request.
And the description of the GET method in the HTTP/1.1 spec, section 9.3:
The GET method means retrieve whatever information ([...]) is identified by the Request-URI.
which states that the request-body is not part of the identification of the resource in a GET request, only the request URI.
Update
The RFC2616 referenced as "HTTP/1.1 spec" is now obsolete. In 2014 it was replaced by RFCs 7230-7237. Quote "the message-body SHOULD be ignored when handling the request" has been deleted. It's now just "Request message framing is independent of method semantics, even if the method doesn't define any use for a message body" The 2nd quote "The GET method means retrieve whatever information ... is identified by the Request-URI" was deleted. - From a comment
From the HTTP 1.1 2014 Spec:
A payload within a GET request message has no defined semantics; sending a payload body on a GET request might cause some existing implementations to reject the request.
While you can do that, insofar as it isn't explicitly precluded by the HTTP specification, I would suggest avoiding it simply because people don't expect things to work that way. There are many phases in an HTTP request chain and while they "mostly" conform to the HTTP spec, the only thing you're assured is that they will behave as traditionally used by web browsers. (I'm thinking of things like transparent proxies, accelerators, A/V toolkits, etc.)
This is the spirit behind the Robustness Principle roughly "be liberal in what you accept, and conservative in what you send", you don't want to push the boundaries of a specification without good reason.
However, if you have a good reason, go for it.
You will likely encounter problems if you ever try to take advantage of caching. Proxies are not going to look in the GET body to see if the parameters have an impact on the response.
Elasticsearch accepts GET requests with a body. It even seems that this is the preferred way: Elasticsearch guide
Some client libraries (like the Ruby driver) can log the cry command to stdout in development mode and it is using this syntax extensively.
Neither restclient nor REST console support this but curl does.
The HTTP specification says in section 4.3
A message-body MUST NOT be included in a request if the specification of the request method (section 5.1.1) does not allow sending an entity-body in requests.
Section 5.1.1 redirects us to section 9.x for the various methods. None of them explicitly prohibit the inclusion of a message body. However...
Section 5.2 says
The exact resource identified by an Internet request is determined by examining both the Request-URI and the Host header field.
and Section 9.3 says
The GET method means retrieve whatever information (in the form of an entity) is identified by the Request-URI.
Which together suggest that when processing a GET request, a server is not required to examine anything other that the Request-URI and Host header field.
In summary, the HTTP spec doesn't prevent you from sending a message-body with GET but there is sufficient ambiguity that it wouldn't surprise me if it was not supported by all servers.
GET, with a body!?
Specification-wise you could, but, it's not a good idea to do so injudiciously, as we shall see.
RFC 7231 §4.3.1 states that a body "has no defined semantics", but that's not to say it is forbidden. If you attach a body to the request and what your server/app makes out of it is up to you. The RFC goes on to state that GET can be "a programmatic view on various database records". Obviously such view is many times tailored by a large number of input parameters, which are not always convenient or even safe to put in the query component of the request-target.
The good: I like the verbiage. It's clear that one read/get a resource without any observable side-effects on the server (the method is "safe"), and, the request can be repeated with the same intended effect regardless of the outcome of the first request (the method is "idempotent").
The bad: An early draft of HTTP/1.1 forbade GET to have a body, and - allegedly - some implementations will even up until today drop the body, ignore the body or reject the message. For example, a dumb HTTP cache may construct a cache key out of the request-target only, being oblivious to the presence or content of a body. An even dumber server could be so ignorant that it treats the body as a new request, which effectively is called "request smuggling" (which is the act of sending "a request to one device without the other device being aware of it" - source).
Due to what I believe is primarily a concern with inoperability amongst implementations, work in progress suggests to categorize a GET body as a "SHOULD NOT", "unless [the request] is made directly to an origin server that has previously indicated, in or out of band, that such a request has a purpose and will be adequately supported" (emphasis mine).
The fix: There's a few hacks that can be employed for some of the problems with this approach. For example, body-unaware caches can indirectly become body-aware simply by appending a hash derived from the body to the query component, or disable caching altogether by responding a cache-control: no-cache header from the server.
Alas when it comes to the request chain, one is often not in control of- or even aware, of all present and future HTTP intermediaries and how they will deal with a GET body. That's why this approach must be considered generally unreliable.
But POST, is not idempotent!
POST is an alternative. The POST request usually includes a message body (just for the record, body is not a requirement, see RFC 7230 §3.3.2). The very first use case example from RFC 7231 (§4.3.3) is "providing a block of data [...] to a data-handling process". So just like GET with a body, what happens with the body on the back-end side is up to you.
The good: Perhaps a more common method to apply when one wish to send a request body, for whatever purpose, and so, will likely yield the least amount of noise from your team members (some may still falsely believe that POST must create a resource).
Also, what we often pass parameters to is a search function operating upon constantly evolving data, and a POST response is only cacheable if explicit freshness information is provided in the response.
The bad: POST requests are not defined as idempotent, leading to request retry hesitancy. For example, on page reload, browsers are unwilling to resubmit an HTML form without prompting the user with a nonreadable cryptic message.
The fix: Well, just because POST is not defined to be idempotent doesn't mean it mustn't be. Indeed, RFC 7230 §6.3.1 writes: "a user agent that knows (through design or configuration) that a POST request to a given resource is safe can repeat that request automatically". So, unless your client is an HTML form, this is probably not a real problem.
QUERY is the holy grail
There's a proposal for a new method QUERY which does define semantics for a message body and defines the method as idempotent. See this.
Edit: As a side-note, I stumbled into this StackOverflow question after having discovered a codebase where they solely used PUT requests for server-side search functions. This were their idea to include a body with parameters and also be idempotent. Alas the problem with PUT is that the request body has very precise semantics. Specifically, the PUT "requests that the state of the target resource be created or replaced with the state [in the body]" (RFC 7231 §4.3.4). Clearly, this excludes PUT as a viable option.
You can either send a GET with a body or send a POST and give up RESTish religiosity (it's not so bad, 5 years ago there was only one member of that faith -- his comments linked above).
Neither are great decisions, but sending a GET body may prevent problems for some clients -- and some servers.
Doing a POST might have obstacles with some RESTish frameworks.
Julian Reschke suggested above using a non-standard HTTP header like "SEARCH" which could be an elegant solution, except that it's even less likely to be supported.
It might be most productive to list clients that can and cannot do each of the above.
Clients that cannot send a GET with body (that I know of):
XmlHTTPRequest Fiddler
Clients that can send a GET with body:
most browsers
Servers & libraries that can retrieve a body from GET:
Apache
PHP
Servers (and proxies) that strip a body from GET:
?
What you're trying to achieve has been done for a long time with a much more common method, and one that doesn't rely on using a payload with GET.
You can simply build your specific search mediatype, or if you want to be more RESTful, use something like OpenSearch, and POST the request to the URI the server instructed, say /search. The server can then generate the search result or build the final URI and redirect using a 303.
This has the advantage of following the traditional PRG method, helps cache intermediaries cache the results, etc.
That said, URIs are encoded anyway for anything that is not ASCII, and so are application/x-www-form-urlencoded and multipart/form-data. I'd recommend using this rather than creating yet another custom json format if your intention is to support ReSTful scenarios.
I put this question to the IETF HTTP WG. The comment from Roy Fielding (author of http/1.1 document in 1998) was that
"... an implementation would be broken to do anything other than to parse and discard that body if received"
RFC 7213 (HTTPbis) states:
"A payload within a GET request message has no defined semantics;"
It seems clear now that the intention was that semantic meaning on GET request bodies is prohibited, which means that the request body can't be used to affect the result.
There are proxies out there that will definitely break your request in various ways if you include a body on GET.
So in summary, don't do it.
From RFC 2616, section 4.3, "Message Body":
A server SHOULD read and forward a message-body on any request; if the
request method does not include defined semantics for an entity-body,
then the message-body SHOULD be ignored when handling the request.
That is, servers should always read any provided request body from the network (check Content-Length or read a chunked body, etc). Also, proxies should forward any such request body they receive. Then, if the RFC defines semantics for the body for the given method, the server can actually use the request body in generating a response. However, if the RFC does not define semantics for the body, then the server should ignore it.
This is in line with the quote from Fielding above.
Section 9.3, "GET", describes the semantics of the GET method, and doesn't mention request bodies. Therefore, a server should ignore any request body it receives on a GET request.
Which server will ignore it? – fijiaaron Aug 30 '12 at 21:27
Google for instance is doing worse than ignoring it, it will consider it an error!
Try it yourself with a simple netcat:
$ netcat www.google.com 80
GET / HTTP/1.1
Host: www.google.com
Content-length: 6
1234
(the 1234 content is followed by CR-LF, so that is a total of 6 bytes)
and you will get:
HTTP/1.1 400 Bad Request
Server: GFE/2.0
(....)
Error 400 (Bad Request)
400. That’s an error.
Your client has issued a malformed or illegal request. That’s all we know.
You do also get 400 Bad Request from Bing, Apple, etc... which are served by AkamaiGhost.
So I wouldn't advise using GET requests with a body entity.
According to XMLHttpRequest, it's not valid. From the standard:
4.5.6 The send() method
client . send([body = null])
Initiates the request. The optional argument provides the request
body. The argument is ignored if request method is GET or HEAD.
Throws an InvalidStateError exception if either state is not
opened or the send() flag is set.
The send(body) method must run these steps:
If state is not opened, throw an InvalidStateError exception.
If the send() flag is set, throw an InvalidStateError exception.
If the request method is GET or HEAD, set body to null.
If body is null, go to the next step.
Although, I don't think it should because GET request might need big body content.
So, if you rely on XMLHttpRequest of a browser, it's likely it won't work.
If you really want to send cachable JSON/XML body to web application the only reasonable place to put your data is query string encoded with RFC4648: Base 64 Encoding with URL and Filename Safe Alphabet. Of course you could just urlencode JSON and put is in URL param's value, but Base64 gives smaller result. Keep in mind that there are URL size restrictions, see What is the maximum length of a URL in different browsers? .
You may think that Base64's padding = character may be bad for URL's param value, however it seems not - see this discussion: http://mail.python.org/pipermail/python-bugs-list/2007-February/037195.html . However you shouldn't put encoded data without param name because encoded string with padding will be interpreted as param key with empty value.
I would use something like ?_b64=<encodeddata>.
I wouldn't advise this, it goes against standard practices, and doesn't offer that much in return. You want to keep the body for content, not options.
You have a list of options which are far better than using a request body with GET.
Let' assume you have categories and items for each category. Both to be identified by an id ("catid" / "itemid" for the sake of this example). You want to sort according to another parameter "sortby" in a specific "order". You want to pass parameters for "sortby" and "order":
You can:
Use query strings, e.g.
example.com/category/{catid}/item/{itemid}?sortby=itemname&order=asc
Use mod_rewrite (or similar) for paths:
example.com/category/{catid}/item/{itemid}/{sortby}/{order}
Use individual HTTP headers you pass with the request
Use a different method, e.g. POST, to retrieve a resource.
All have their downsides, but are far better than using a GET with a body.
What about nonconforming base64 encoded headers? "SOMETHINGAPP-PARAMS:sdfSD45fdg45/aS"
Length restrictions hm. Can't you make your POST handling distinguish between the meanings? If you want simple parameters like sorting, I don't see why this would be a problem. I guess it's certainty you're worried about.
I'm upset that REST as protocol doesn't support OOP and Get method is proof. As a solution, you can serialize your a DTO to JSON and then create a query string. On server side you'll able to deserialize the query string to the DTO.
Take a look on:
Message-based design in ServiceStack
Building RESTful Message Based Web Services with WCF
Message based approach can help you to solve Get method restriction. You'll able to send any DTO as with request body
Nelibur web service framework provides functionality which you can use
var client = new JsonServiceClient(Settings.Default.ServiceAddress);
var request = new GetClientRequest
{
Id = new Guid("2217239b0e-b35b-4d32-95c7-5db43e2bd573")
};
var response = client.Get<GetClientRequest, ClientResponse>(request);
as you can see, the GetClientRequest was encoded to the following query string
http://localhost/clients/GetWithResponse?type=GetClientRequest&data=%7B%22Id%22:%2217239b0e-b35b-4d32-95c7-5db43e2bd573%22%7D
IMHO you could just send the JSON encoded (ie. encodeURIComponent) in the URL, this way you do not violate the HTTP specs and get your JSON to the server.
For example, it works with Curl, Apache and PHP.
PHP file:
<?php
echo $_SERVER['REQUEST_METHOD'] . PHP_EOL;
echo file_get_contents('php://input') . PHP_EOL;
Console command:
$ curl -X GET -H "Content-Type: application/json" -d '{"the": "body"}' 'http://localhost/test/get.php'
Output:
GET
{"the": "body"}
Even if a popular tool use this, as cited frequently on this page, I think it is still quite a bad idea, being too exotic, despite not forbidden by the spec.
Many intermediate infrastructures may just reject such requests.
By example, forget about using some of the available CDN in front of your web site, like this one:
If a viewer GET request includes a body, CloudFront returns an HTTP status code 403 (Forbidden) to the viewer.
And yes, your client libraries may also not support emitting such requests, as reported in this comment.
If you want to allow a GET request with a body, a way is to support POST request with header "X-HTTP-Method-Override: GET". It is described here : https://en.wikipedia.org/wiki/List_of_HTTP_header_fields. This header means that while the method is POST, the request should be treated as if it is a GET. Body is allowed for POST, so you're sure nobody willl drop the payload of your GET requests.
This header is oftenly used to make PATCH or HEAD requests through some proxies that do not recognize those methods and replace them by GET (always fun to debug!).
An idea on an old question:
Add the full content on the body, and a short hash of the body on the querystring, so caching won't be a problem (the hash will change if body content is changed) and you'll be able to send tons of data when needed :)
Create a Requestfactory class
import java.net.URI;
import javax.annotation.PostConstruct;
import org.apache.http.client.methods.HttpEntityEnclosingRequestBase;
import org.apache.http.client.methods.HttpUriRequest;
import org.springframework.http.HttpMethod;
import org.springframework.http.client.HttpComponentsClientHttpRequestFactory;
import org.springframework.stereotype.Component;
import org.springframework.web.client.RestTemplate;
#Component
public class RequestFactory {
private RestTemplate restTemplate = new RestTemplate();
#PostConstruct
public void init() {
this.restTemplate.setRequestFactory(new HttpComponentsClientHttpRequestWithBodyFactory());
}
private static final class HttpComponentsClientHttpRequestWithBodyFactory extends HttpComponentsClientHttpRequestFactory {
#Override
protected HttpUriRequest createHttpUriRequest(HttpMethod httpMethod, URI uri) {
if (httpMethod == HttpMethod.GET) {
return new HttpGetRequestWithEntity(uri);
}
return super.createHttpUriRequest(httpMethod, uri);
}
}
private static final class HttpGetRequestWithEntity extends HttpEntityEnclosingRequestBase {
public HttpGetRequestWithEntity(final URI uri) {
super.setURI(uri);
}
#Override
public String getMethod() {
return HttpMethod.GET.name();
}
}
public RestTemplate getRestTemplate() {
return restTemplate;
}
}
and #Autowired where ever you require and use, Here is one sample code GET request with RequestBody
#RestController
#RequestMapping("/v1/API")
public class APIServiceController {
#Autowired
private RequestFactory requestFactory;
#RequestMapping(method = RequestMethod.GET, path = "/getData")
public ResponseEntity<APIResponse> getLicenses(#RequestBody APIRequest2 APIRequest){
APIResponse response = new APIResponse();
HttpHeaders headers = new HttpHeaders();
headers.setContentType(MediaType.APPLICATION_JSON);
Gson gson = new Gson();
try {
StringBuilder createPartUrl = new StringBuilder(PART_URL).append(PART_URL2);
HttpEntity<String> entity = new HttpEntity<String>(gson.toJson(APIRequest),headers);
ResponseEntity<APIResponse> storeViewResponse = requestFactory.getRestTemplate().exchange(createPartUrl.toString(), HttpMethod.GET, entity, APIResponse.class); //.getForObject(createLicenseUrl.toString(), APIResponse.class, entity);
if(storeViewResponse.hasBody()) {
response = storeViewResponse.getBody();
}
return new ResponseEntity<APIResponse>(response, HttpStatus.OK);
}catch (Exception e) {
e.printStackTrace();
return new ResponseEntity<APIResponse>(response, HttpStatus.INTERNAL_SERVER_ERROR);
}
}
}

Is the URL subject to HTTP/2 header compression?

I understand that, if you send duplicate header values in subsequent requests, the dynamic table makes it so that you do not send the value again but a reference to it in the table is sent instead.
My question is whether this applies to the URL as well?
Say you have repeated requests to the same URL (possibly containing long IDs and/or tokens), would bandwidth be saved in this instance?
There are various options that a client can use to send headers under HTTP/2 as defined in the HPACK specification. These basically say whether to use a previously referred to header, whether to store a header for later reference, whether to never store a header for reuse...etc. The client decides which of these to use for headers it sends.
In HTTP/2 the URL is sent in the :path pseudo-header so unlike in HTTP/1.1 it is a just like any other HTTP Header so could be compressed. Typically a URL is not repeated often, however, so it would be sent as a Literal Header Field without Indexing, which means this is a once off header so don’t store it for reuse. Of course, as it’s an HTTP header much like any other, there’s nothing to stop an HTTP/2 client sending this as an indexed type, but web browsers are unlikely to do this, so this is probably only really an option for custom clients.
Incidentally if wishing to know more about this, and finding the spec a little difficult to follow, then my book HTTP/2 in Action, goes into this in a lot more detail in Chapter 8.

Google cloud load balancer custom http header is missing

While using Google Cloud HTTPS Load Balancer we hit the following bug. Couldn't find any information on it.
We have a custom http header in our request:
X-<Company name>-abcde. If we are working directly against the server all is good, but once we are working through the load balancer, than our custom header is missing. We didn't find any reference in the documentation that there is a need to white list our headers or something like that.
Why my custom header is not being transferred to my backend server while working through Google Cloud Load Balancer? And how to make it work?
Thanks
Data
After a lot of testing, these are the results I've come up with:
The Google Cloud HTTPS Load Balancer does transfer custom HTTP headers to the backend service.
However, it changes them to lower-case.
So, in your case, X-Custom-Header is transformed to x-custom-header.
Solution
Simply change your code to read the lower-case version of your custom HTTP header. This is a simple fix, but one which may not be supported in the long-term by Google (there's not a word on this in Google's documentation so it's subject to change with no notice).
Petition Google to change this idiosyncratic behaviour or at the very least mention it clearly in their documentation.
A little extra
As far as I know, the RFC 2047 which specified the X- prefix for custom HTTP headers and propagated the pseudo-standard of a capital letter for each word has been deprecated and replaced by RFC 6648 which recommends against the X- prefix in general and mentions nothing regarding the rest of the words in the custom HTTP header key name. If I were Google, I would change this behaviour to pass custom HTTP headers as is and let developers deal with the strings as they've set them.
The RFC (RFC 7230) for HTTP/1.1 Message Syntax and Routing says that header fields have a case-insensitive field name. If you're relying on case to match the header that doesn't align with the RFC.
Way back in the day I looked through either the Tomcat of Jetty source and they worked with everything as a .toLower().
Go has a CanonicalMIMEHeaderKey where it'll format the headers in a common way to be sure everything is on the same page.
Python still harkens back to the RFC822 (hg.python.org/cpython/file/2.7/Lib/rfc822.py#l211) days, but it forces a .lower() on headers to standardize.
Basically though what the GCP HTTP(S) Load Balancer is doing is acceptable as far as the RFC is concerned.
This is most likely an application bug.
As other answers have stated, HTTP header names are case insensitive. Ime, every time headers appear to be case sensitive, it is because there is a request wrapper somewhere in the application call stack.
Request wrappers like this are common (usually necessary) in Java servlet filters. It's a common, newbie mistake to use case-sensitive matching (e.g. a regular Java HashMap<String, T>()) for the header names in the wrapper.
That's where I would start looking for your bug.
A reasonable way to create a Java Map<String, T> that is both case insensitive and that doesn't modify the keys is to use new TreeMap<String, T>( String.CASE_INSENSITIVE_ORDER ).

jMeter issue when using Cookie manager and Regular expression extractor

So basically I need to extract an auth token from header response of 1st http request and then use the extracted data in 2nd (and all the following) http requests cookies.
The issue here is, that I have cookie manager set for the whole controller and instead of getting actual data I get the name of variable in my cookie ".authToken=${auth}".
I am guessing the reason is that the variable is not declared when the test reaches Cookie manager, but I would expect jmeter to be smart enough to declare the variable when it gets to the regular expression extractor.
Structure
Thread
Cache Manager
Cookie Manager (Cookie Policy:compatibility; Implementation:HC3)
Controller
Http Request
Regular expression extractor
Http request (I need to use value extracted above in Request Cookie here)
Http request (I need to use the same value in Request Cookie here)
Http request (I need to use the same value in Request Cookie here)
.....
Details:
All the http requests are recorded with implementation HttpClient3.1
Pretty sure I have everything configured correctly as in variable names, regular expression since it works in a very specific case:
The only time it seemed to work correctly was when I had Cookie manager inside the http request and disabled the 'main' Cookie manager (the one for the whole controller). Then it got extracted correctly, but that would be really silly workaround for such a basic requirement and also I have many http requests (over 100) where I need to use the extracted value.
Jmeter doesn't need to use the variable before it's declared by the regular expression extractor, I made sure that the domain is correct and it gets used for the first time after it should have been extracted.
Another workaround I thought of would be having separate threads, have them linked and send the variable in between them, launching the next one once the data gets extracted, but that seems a little bit too drastic.
What I tried:
Splitting http requests into 2 different controllers and using 2 different Cookie managers - got "${auth}" instead of some value
Defining user variable above controller and then using "Apply to: Jmeter Variable" option - again got just string "${auth}" instead of some value.
Moving the Cookie manager to a position after the http request which is used for the extraction - again "${auth}" instead of some value
Setting different cookie's policy (not all of them, but few)
Setting "CookieManager.save.cookies=true" in jmeter.properties (and still have on true)
Any help/ideas are appreciated. I have been trying to figure this out for about an hour and I think I must be missing something very simple.
Alright, finally got this resolved after roughly 2 hours.
Thanks to this article, I was able to do what I needed
https://capacitas.wordpress.com/2013/06/11/thats-the-way-the-cookie-crumbles-jmeter-style-part-2/
In nutshell: You need to use beanshell pre-processor and add the cookie manually
Here is the beanshell script in case the site dies:
import org.apache.jmeter.protocol.http.control.CookieManager;
import org.apache.jmeter.protocol.http.control.Cookie;
CookieManager manager = sampler.getCookieManager();
Cookie cookie = new Cookie("CookieName", vars.get("YourExtractedVariable"), "Domain", "Path", false, 0);
manager.add(cookie);

Does the `Expires` HTTP header needs to be consistent across multiple cold-cache requests?

I'm implementing a custom web server of a kind. And am looking into adding an Expires header support. However, I'm a little unsure of how exactly to implement it.
If multiple cold-cache requests are being made to the same unchanged resource on the server and the server returned different Expires header (say it uses relative time to calculate the exact value of the Expires date e.g. +6 hours from the request time), does that invalidate the cache on all the proxy servers in-between as well? Or is it impossible to happen (per the spec)?
Does the Expires HTTP header needs to be consistent across multiple cold-cache requests?
Ok, never mind, found the relevant information under the Cache Revalidation and Reload Controls section of the HTTP Spec
Basically, you can serve all the different validators you want but you must be aware that in such case proxies may have a set of different validators from their own cache and from various user agents communicating with the proxy. They may choose to send one to you and that might not be the correct or the most optimal one for the end-users. However, a "best approach" has been suggested in the spec.
I suppose this should covers Expires headers as well as ETags, Cache-Control and whatnot.
Here's the relevant excerpt, in case anyone's interested:
When an intermediate cache is forced,
by means of a max-age=0 directive, to
revalidate its own cache entry, and
the client has supplied its own
validator in the request, the supplied
validator might differ from the
validator currently stored with the
cache entry. In this case, the cache
MAY use either validator in making its
own request without affecting semantic
transparency. However, the choice of
validator might affect performance.
The best approach is for the
intermediate cache to use its own
validator when making its request. If
the server replies with 304 (Not
Modified), then the cache can return
its now validated copy to the client
with a 200 (OK) response. If the
server replies with a new entity and
cache validator, however, the
intermediate cache can compare the
returned validator with the one
provided in the client's request,
using the strong comparison function.
If the client's validator is equal to
the origin server's, then the
intermediate cache simply returns 304
(Not Modified). Otherwise, it returns
the new entity with a 200 (OK)
response. If a request includes the
no-cache directive, it SHOULD NOT
include min-fresh, max-stale, or
max-age.