Is ZSKIPLIST_MAXLEVEL(64) enough for 2^64 elements? - redis

I have learned about skiplist from Skip Lists: A Probabilistic Alternative to Balanced Trees recently. I think 64 levels with p=0.25 should have 4^64 elements( If p = 1/2, using MaxLevel = 16 is appropriate for data structures containing up to 2^16 elements.--quote from A Probabilistic Alternative to Balanced Trees). But when I check the Redis server.h, I see
define ZSKIPLIST_MAXLEVEL 64 /* Should be enough for 2^64 elements */
define ZSKIPLIST_P 0.25 /* Skiplist P = 1/4 */.
Am I wrong or the config wrong?

You are right. It is fair to say that server.h defines a MAXLEVEL higher than necessary.
The probability that a particular element reaches a level at least k is p^k, and the probability that any of the n elements reaches a level at least k is n·p^k.
Redis uses the skip list for sorted sets, and it uses it in conjunction with a hash map. The hash map (dict) has a capacity of 2^64-1 elements (ready for, not ever tested in practice). Hence the comment on ZSKIPLIST_MAXLEVEL.
It follows that if we use N = 2^64 as an upper bound on the number of elements in the skip list, Redis could have used ZSKIPLIST_MAXLEVEL = 32.
The nodes allocate memory up the level they actually got when rolling the dice. Only the first, null node uses the ZSKIPLIST_MAXLEVEL. The impact: 512 bytes of extra memory per sorted list (of 129 entries or more - before, it uses a ziplist, see zset-max-ziplist-entries config setting).
The other side effect is the chance a node would get an unnecessarily high level, but the odds get really low really fast as we go up beyond the 32nds level.
I think it is worth fixing IMO, for those 512 bytes.

Related

Homomorphic encryption using Palisade library

To all homomorphic encryption experts out there:
I'm using the PALISADE library:
int plaintextModulus = 65537;
float sigma = 3.2;
SecurityLevel securityLevel = HEStd_128_classic;
uint32_t depth = 2;
//Instantiate the crypto context
CryptoContext<DCRTPoly> cc = CryptoContextFactory<DCRTPoly>::genCryptoContextBFVrns(
plaintextModulus, securityLevel, sigma, 0, depth, 0, OPTIMIZED);
could you please explain (all) the parameters especially intrested in ptm, depth and sigma.
Secondly I am trying to make a Packed Plaintext with the cc above.
cc->MakePackedPlaintext(array);
What is the maximum size of the array? On my local machine (8GB RAM) when the array is larger than ~8000 int64 I get an free(): invalid next size (normal) error
Thank you for asking the question.
Plaintext modulus t (denoted as t here) is a critical parameter for BFV as all operations are performed mod t. In other words, when you choose t, you have to make sure that all computations do not wrap around, i.e., do not exceed t. Otherwise you will get an incorrect answer unless your goal is to compute something mod t.
sigma is the distribution parameter (used for the underlying Learning with Errors problem). You can just set to 3.2. No need to change it.
Depth is the multiplicative depth of the circuit you are trying to compute. It has nothing to with the size of vectors. Basically, if you have AxBxCxD, you have a depth 3 with a naive approach. BFV also supports more efficient binary tree evaluation, i.e., (AxB)x(CxD) - this option will reduce the depth to 2.
BFV is a scheme that supports packing. By default, the size of packed ciphertext is equal to the ring dimension (something like 8192 for the example you mentioned). This means you can pack up to 8192 integers in your case. To support larger arrays/vectors, you would need to break them into batches of 8192 each and encrypt each one separately.
Regarding your application, the CKKS scheme would probably be a much better option (I will respond on the application in more detail in the other thread).
I have some experience with the SEAL library which also uses the BFV encryption scheme. The BFV scheme uses modular arithmetic and is able to encrypt integers (not real numbers).
For the parameters you're asking about:
The Plaintext Modulus is an upper bound for the input integers. If this parameter is too low, it might cause your integers to overflow (depending on how large they are of course)
The Sigma is the distribution parameter for Gaussian noise generation
The Depth is the circuit depth which is the maximum number of multiplications on a path
Also for the Packed Plaintext, you should use vectors not arrays. Maybe that will fix your problem. If not, try lowering the size and make several vectors if necessary.
You can determine the ring dimension (generated by the crypto context based on your parameter settings) by using cc->GetRingDimension() as shown in line 113 of https://gitlab.com/palisade/palisade-development/blob/master/src/pke/examples/simple-real-numbers.cpp

Does multiply by 1.0 take less time than usual multiplications

Does x86(64 too) processor optimise away the multiplication if one of the operands of multiplication happens to be 1.0?
PS:I do not mean compiler optimising a constant multiplication of 1.0.
That's not something I've seen mentioned in docs about instruction latencies or microarchitectures of Intel or AMD CPUs.
I suspect it doesn't happen, because variable latency would interfere with pipelined execution units. (multiple results coming out of the same execution unit in the same clock cycle = extra complexity). Also, there are probably other bits of logic (uop scheduling / queueing, result forwarding networks) that are designed around every uop having known latency. (except for special cases like division / sqrt).
IIRC, one analyst, maybe Agner Fog or David Kanter, suggested that some uops might have been possible to implement with 2 cycle latency, but instead take 3 cycles to match the other uops that their execution port can handle. So constant latency for operations appears to be a big deal for Intel CPU designs, to the extent that it was worth making an operation slower.
Note that we're only talking about latency here. If your multiply isn't part of a loop-carried dependency chain, or you have enough independent multiplies, you can keep the multiplier(s) going with one operation per clock.
Haswell CPUs can sustain a throughput of 2 FP vector multiplies per clock. (256b vectors of 4 doubles or 8 floats). Latency = 5 clock cycles for the result to be ready, regardless of input. Or 1 vector integer multiply per clock. (The vector multiply ALU is on port 0. The vector FP multipliers are on port 0 and port 1).
Avoid multiplying when you can, it leads to long dependency chains. (Usually this comes up for integer multiplies to calculate loop indices. Compilers do a lot better when you write your loop to increment the counter by 16, instead of multiplying i++ by 16 as an array index.)

Encoding - Efficiently send sparse boolean array

I have a 256 x 256 boolean array. These array is constantly changing and set bits are practically randomly distributed.
I need to send a current list of the set bits to many clients as they request them.
Following numbers are approximations.
If I send the coordinates for each set bit:
set bits data transfer (bytes)
0 0
100 200
300 600
500 1000
1000 2000
If I send the distance (scanning from left to right) to the next set bit:
set bits data transfer (bytes)
0 0
100 256
300 300
500 500
1000 1000
The typical number of bits that are set in this sparse array is around 300-500, so the second solution is better.
Is there a way I can do better than this without much added processing overhead?
Since you say "practically randomly distributed", let's assume that each location is a Bernoulli trial with probability p. p is chosen to get the fill rate you expect. You can think of the length of a "run" (your option 2) as the number of Bernoulli trials necessary to get a success. It turns out this number of trials follows the Geometric distribution (with probability p). http://en.wikipedia.org/wiki/Geometric_distribution
What you've done so far in option #2 is to recognize the maximum length of the run in each case of p, and reserve that many bits to send all of them. Note that this maximum length is still just a probability, and the scheme will fail if you get REALLY REALLY unlucky, and all your bits are clustered at the beginning and end.
As #Mike Dunlavey recommends in the comment, Huffman coding, or some other form of entropy coding, can redistribute the bits spent according to the frequency of the length. That is, short runs are much more common, so use fewer bits to send those lengths. The theoretical limit for this encoding efficiency is the "entropy" of the distribution, which you can look up on that Wikipedia page, and evaluate for different probabilities. In your case, this entropy ranges from 7.5 bits per run (for 1000 entries) to 10.8 bits per run (for 100).
Actually, this means you can't do much better than you're currently doing for the 1000 entry case. 8 bits = 1 byte per value. For the case of 100 entries, you're currently spending 20.5 bits per run instead of the theoretically possible 10.8, so that end has the highest chance for improvement. And in the case of 300: I think you haven't reserved enough bits to represent these sequences. The entropy comes out to 9.23 bits per pixel, and you're currently sending 8. You will find many cases where the space between true exceeds 256, which will overflow your representation.
All of this, of course, assumes that things really are random. If they're not, you need a different entropy calculation. You can always compute the entropy right out of your data with a histogram, and decide if it's worth pursuing a more complicated option.
Finally, also note that real-life entropy coders only approximate the entropy. Huffman coding, for example, has to assign an integer number of bits to each run length. Arithmetic coding can assign fractional bits.

How to optimize OpenCL code for neighbors accessing?

Edit: Proposed solutions results are added at the end of the question.
I'm starting to program with OpenCL, and I have created a naive implementation of my problem.
The theory is: I have a 3D grid of elements, where each elements has a bunch of information (around 200 bytes). Every step, every element access its neighbors information and accumulates this information to prepare to update itself. After that there is a step where each element updates itself with the information gathered before. This process is executed iteratively.
My OpenCL implementation is: I create an OpenCL buffer of 1 dimension, fill it with structs representing the elements, which have an "int neighbors 6 " where I store the index of the neighbors in the Buffer. I launch a kernel that consults the neighbors and accumulate their information into element variables not consulted in this step, and then I launch another kernel that uses this variables to update the elements. These kernels use __global variables only.
Sample code:
typedef struct{
float4 var1;
float4 var2;
float4 nextStepVar1;
int neighbors[8];
int var3;
int nextStepVar2;
bool var4;
} Element;
__kernel void step1(__global Element *elements, int nelements){
int id = get_global_id(0);
if (id >= nelements){
return;
}
Element elem = elements[id];
for (int i=0; i < 6; ++i){
if (elem.neighbors[i] != -1){
//Gather information of the neighbor and accumulate it in elem.nextStepVars
}
}
elements[id] = elem;
}
__kernel void step2(__global Element *elements, int nelements){
int id = get_global_id(0);
if (id >= nelements){
return;
}
Element elem = elements[id];
//update elem variables by using elem.nextStepVariables
//restart elem.nextStepVariables
}
Right now, my OpenCL implementation takes basically the same time than my C++ implementation.
So, the question is: How would you (the experts :P) address this problem?
I have read about 3D images, to store the information and change the neighborhood accessing pattern by changing the NDRange to a 3D one. Also, I have read about __local memory, to first load all the neighborhood in a workgroup, synchronize with a barrier and then use them, so that accesses to memory are reduced.
Could you give me some tips to optimize a process like the one I described, and if possible, give me some snippets?
Edit: Third and fifth optimizations proposed by Huseyin Tugrul were already in the code. As mentioned here, to make structs behave properly, they need to satisfy some restrictions, so it is worth understanding that to avoid headaches.
Edit 1: Applying the seventh optimization proposed by Huseyin Tugrul performance increased from 7 fps to 60 fps. In a more general experimentation, the performance gain was about x8.
Edit 2: Applying the first optimization proposed by Huseyin Tugrul performance increased about x1.2 . I think that the real gain is higher, but hides because of another bottleneck not yet solved.
Edit 3: Applying the 8th and 9th optimizations proposed by Huseyin Tugrul didn't change performance, because of the lack of significant code taking advantage of these optimizations, worth trying in other kernels though.
Edit 4: Passing invariant arguments (such as n_elements or workgroupsize) to the kernels as #DEFINEs instead of kernel args, as mentioned here, increased performance around x1.33. As explained in the document, this is because of the aggressive optimizations that the compiler can do when knowing the variables at compile-time.
Edit 5: Applying the second optimization proposed by Huseyin Tugrul, but using 1 bit per neighbor and using bitwise operations to check if neighbor is present (so, if neighbors & 1 != 0, top neighbor is present, if neighbors & 2 != 0, bot neighbor is present, if neighbors & 4 != 0, right neighbor is present, etc), increased performance by a factor of x1.11. I think this was mostly because of the data transfer reduction, because the data movement was, and keeps being my bottleneck. Soon I will try to get rid of the dummy variables used to add padding to my structs.
Edit 6: By eliminating the structs that I was using, and creating separated buffers for each property, I eliminated the padding variables, saving space, and was able to optimize the global memory access and local memory allocation. Performance increased by a factor of x1.25, which is very good. Worth doing this, despite the programmatic complexity and unreadability.
According to your step1 and step2, you are not making your gpu core work hard. What is your kernel's complexity? What is your gpu usage? Did you check with monitoring programs like afterburner? Mid-range desktop gaming cards can get 10k threads each doing 10k iterations.
Since you are working with only neighbours, data size/calculation size is too big and your kernels may be bottlenecked by vram bandiwdth. Your main system ram could be as fast as your pci-e bandwidth and this could be the issue.
1) Use of Dedicated Cache could be getting you thread's actual grid cell into private registers that is fastest. Then neighbours into __local array so the comparisons/calc only done in chip.
Load current cell into __private
Load neighbours into __local
start looping for local array
get next neighbour into __private from __local
compute
end loop
(if it has many neighbours, lines after "Load neighbours into __local" can be in another loop that gets from main memory by patches)
What is your gpu? Nice it is GTX660. You should have 64kB controllable cache per compute unit. CPUs have only registers of 1kB and not addressable for array operations.
2) Shorter Indexing could be using a single byte as index of neighbour stored instead of int. Saving precious L1 cache space from "id" fetches is important so that other threads can hit L1 cache more!
Example:
0=neighbour from left
1=neighbour from right
2=neighbour from up
3=neighbour from down
4=neighbour from front
5=neighbour from back
6=neighbour from upper left
...
...
so you can just derive neighbour index from a single byte instead of 4-byte int which decreases main memory accessing for at least neighbour accessing. Your kernel will derive neighbour index from upper table using its compute power, not memory power because you would make this from core registers(__privates). If your total grid size is constant, this is very easy such as just adding 1 actual cell id, adding 256 to id or adding 256*256 to id or so.
3) Optimum Object Size could be making your struct/cell-object size a multiple of 4 bytes. If your total object size is around 200-bytes, you can pad it or augment it with some empty bytes to make exactly 200 bytes, 220Bytes or 256 bytes.
4) Branchless Code (Edit: depends!) using less if-statements. Using if-statement makes computation much slower. Rather than checking for -1 as end of neightbour index , you can use another way . Becuase lightweight core are not as capable of heavyweight. You can use surface-buffer-cells to wrap the surface so computed-cells will have always have 6-neighbours so you get rid of if (elem.neighbors[i] != -1) . Worth a try especially for GPU.
Just computing all neighbours are faster rather than doing if-statement. Just multiply the result change with zero when it is not a valid neighbour. How can we know that it is not a valid neighbour? By using a byte array of 6-elements per cell(parallel to neighbour id array)(invalid=0, valid=1 -->multiply the result with this)
The if-statement is inside a loop which counting for six times. Loop unrolling gives similar speed-up if the workload in the loop is relatively easy.
But, if all threads within same warp goes into same if-or-else branch, they don't lose performance. So this depends wheter your code diverges or not.
5) Data Elements Reordering you can move the int[8] element to uppermost side of struct so memory accessing may become more yielding so smaller sized elements to lower side can be read in a single read-operation.
6) Size of Workgroup trying different local workgroup size can give 2-3x performance. Starting from 16 until 512 gives different results. For example, AMD GPUs like integer multiple of 64 while NVIDIA GPUs like integer multiple of 32. INTEL does fine at 8 to anything since it can meld multiple compute units together to work on same workgroup.
7) Separation of Variables(only if you cant get rid of if-statements) Separation of comparison elements from struct. This way you dont need to load a whole struct from main memory just to compare an int or a boolean. When comparison needs, then loads the struct from main memory(if you have local mem optimization already, then you should put this operation before it so loading into local mem is only done for selected neighbours)
This optimisation makes best case(no neighbour or only one eighbour) considerably faster. Does not affect worst case(maximum neighbours case).
8a) Magic Using shifting instead of dividing by power of 2. Doing similar for modulo. Putting "f" at the end of floating literals(1.0f instead of 1.0) to avoid automatic conversion from double to float.
8b) Magic-2 -cl-mad-enable Compiler option can increase multiply+add operation speed.
9) Latency Hiding Execution configuration optimization. You need to hide memory access latency and take care of occupancy.
Get maximum cycles of latency for instructions and global memory access.
Then divide memory latency by instruction latency.
Now you have the ratio of: arithmetic instruction number per memory access to hide latency.
If you have to use N instructions to hide mem latency and you have only M instructions in your code, then you will need N/M warps(wavefronts?) to hide latency because a thread in gpu can do arithmetics while other thread getting things from mem.
10) Mixed Type Computing After memory access is optimized, swap or move some instructions where applicable to get better occupancy, use half-type to help floating point operations where precision is not important.
11) Latency Hiding again Try your kernel code with only arithmetics(comment out all mem accesses and initiate them with 0 or sometihng you like) then try your kernel code with only memory access instructions(comment out calculations/ ifs)
Compare kernel times with original kernel time. Which is affeecting the originatl time more? Concentrate on that..
12) Lane & Bank Conflicts Correct any LDS-lane conflicts and global memory bank conflicts because same address accessings can be done in a serialed way slowing process(newer cards have broadcast ability to reduce this)
13) Using registers Try to replace any independent locals with privates since your GPU can give nearly 10TB/s throughput using registers.
14) Not Using Registers Dont use too many registers or they will spill to global memory and slow the process.
15) Minimalistic Approach for Occupation Look at local/private usage to get an idea of occupation. If you use much more local and privates then less threads can be utilized in same compute unit and leading lesser occupation. Less resource usage leads higher chance of occupation(if you have enough total threads)
16) Gather Scatter When neighbours are different particles(like an nbody NNS) from random addresses of memory, its maybe hard to apply but, gather read optimization can give 2x-3x speed on top of before optimizations (needs local memory optimization to work) so it reads in an order from memory instead of randomly and reorders as needed in the local memory to share between (scatter) to threads.
17) Divide and Conquer Just in case when buffer is too big and copied between host and device so makes gpu wait idle, then divide it in two, send them separately, start computing as soon as one arrives, send results back concurrently in the end. Even a process-level parallelism could push a gpu to its limits this way. Also L2 cache of GPU may not be enough for whole of data. Cache-tiled computing but implicitly done instead of direct usage of local memory.
18) Bandwidth from memory qualifiers. When kernel needs some extra 'read' bandwidth, you can use '__constant'(instead of __global) keyword on some parameters which are less in size and only for reading. If those parameters are too large then you can still have good streaming from '__read_only' qualifier(after the '__global' qualifier). Similary '__write_only' increases throughput but these give mostly hardware-specific performance. If it is Amd's HD5000 series, constant is good. Maybe GTX660 is faster with its cache so __read_only may become more usable(or Nvidia using cache for __constant?).
Have three parts of same buffer with one as __global __read_only, one as __constant and one as just __global (if building them doesn't penalty more than reads' benefits).
Just tested my card using AMD APP SDK examples, LDS bandwidth shows 2TB/s while constant is 5TB/s(same indexing instead of linear/random) and main memory is 120 GB/s.
Also don't forget to add restrict to kernel parameters where possible. This lets compiler do more optimizations on them(if you are not aliasing them).
19) Modern hardware transcendental functions are faster than old bit hack (like Quake-3 fast inverse square root) versions
20) Now there is Opencl 2.0 which enables spawning kernels inside kernels so you can further increase resolution in a 2d grid point and offload it to workgroup when needed (something like increasing vorticity detail on edges of a fluid dynamically)
A profiler can help for all those, but any FPS indicator can do if only single optimization is done per step.
Even if benchmarking is not for architecture-dependent code paths, you could try having a multiple of 192 number of dots per row in your compute space since your gpu has multiple of that number of cores and benchmark that if it makes gpu more occupied and have more gigafloatingpoint operations per second.
There must be still some room for optimization after all these options, but idk if it damages your card or feasible for production time of your projects. For example:
21) Lookup tables When there is 10% more memory bandwidth headroom but no compute power headroom, offload 10% of those workitems to a LUT version such that it gets precomputed values from a table. I didn't try but something like this should work:
8 compute groups
2 LUT groups
8 compute groups
2 LUT groups
so they are evenly distributed into "threads in-flight" and get advantage of latency hiding stuff. I'm not sure if this is a preferable way of doing science.
21) Z-order pattern For traveling neighbors increases cache hit rate. Cache hit rate saves some global memory bandwidth for other jobs so that overall performance increases. But this depends on size of cache, data layout and some other things I don't remember.
22) Asynchronous Neighbor Traversal
iteration-1: Load neighbor 2 + compute neighbor 1 + store neighbor 0
iteration-2: Load neighbor 3 + compute neighbor 2 + store neighbor 1
iteration-3: Load neighbor 4 + compute neighbor 3 + store neighbor 2
so each body of loop doesn't have any chain of dependency and fully pipelined on GPU processing elements and OpenCL has special instructions for asynchronously loading/storing global variables using all cores of a workgroup. Check this:
https://www.khronos.org/registry/OpenCL/sdk/1.0/docs/man/xhtml/async_work_group_copy.html
Maybe you can even divide computing part into two and have one part use transcandental functions and other part use add/multiply so that add/multiply operations don't wait for a slow sqrt. If there are at least several neighbors to traveerse, this should hide some latency behind other iterations.

Shared Memory Bank Conflicts in CUDA: How memory is aligned to banks

As far as my understanding goes, shared memory is divided into banks and accesses by multiple threads to a single data element within the same bank will cause a conflict (or broadcast).
At the moment I allocate a fairly large array which conceptually represents several pairs of two matrices:
__shared__ float A[34*N]
Where N is the number of pairs and the first 16 floats of a pair are one matrix and the following 18 floats are the second.
The thing is, access to the first matrix is conflict free but access to the second one has conflicts. These conflicts are unavoidable, however, my thinking is that because the second matrix is 18 all future matrices will be misaligned to the banks and therefore more conflicts than necessary will occur.
Is this true, if so how can I avoid it?
Everytime I allocate shared memory, does it start at a new bank? So potentially could I do
__shared__ Apair1[34]
__shared__ Apair2[34]
...
Any ideas?
Thanks
If your pairs of matrices are stored contiguously, and if you are accessing the elements linearly by thread index, then you will not have shared memory bank conflicts.
In other words if you have:
A[0] <- mat1 element1
A[1] <- mat1 element2
A[2] <- mat1 element3
A[15] <- mat1 element16
A[16] <- mat2 element1
A[17] <- mat2 element2
A[33] <- mat2 element18
And you access this using:
float element;
element = A[pairindex * 34 + matindex * 16 + threadIdx.x];
Then adjacent threads are accessing adjacent elements in the matrix and you do not have conflicts.
In response to your comments (below) it does seem that you are mistaken in your understanding. It is true that there are 16 banks (in current generations, 32 in the next generation, Fermi) but consecutive 32-bit words reside in consecutive banks, i.e. the address space is interleaved across the banks. This means that provided you always have an array index that can be decomposed to x + threadIdx.x (where x is not dependent on threadIdx.x, or at least is constant across groups of 16 threads) you will not have bank conflicts.
When you access the matrices further along the array, you still access them in a contiguous chunk and hence you will not have bank conflicts. It is only when you start accessing non-adjacent elements that you will have bank conflicts.
The reduction sample in the SDK illustrates bank conflicts very well by building from a naive implementation to an optimised implementation, possibly worth taking a look.
Banks are set up such that each successive 32 bits are in the next bank. So, if you declare an array of 4 byte floats, each subsequent float in the array will be in the next bank (modulo 16 or 32, depending on your architecture). I'll assume you're on compute capability 1.x, so you have a bank of width 16.
If you have arrays of 18 and 16, things can be funny. You can avoid bank conflicts in the 16x16 array by declaring it like
__shared__ float sixteen[16][16+1]
which avoids bank conflicts when accessing transpose elements using threadIdx.x (as I assume you're doing if you're getting conflicts). When accessing elements in, say, the first row of a 16x16 matrix, they'll all reside in the 1st bank. What you want to do is have each of these in a successive bank. Padding does this for you. You treat the array exactly as you would before, as sixteen[row][column], or similarly for a flattened matrix, as sixteen[row*(16+1)+column], if you want.
For the 18x18 case, when accessing in the transpose, you're moving at an even stride. The answer again is to pad by 1.
__shared__ float eighteens[18][18+1]
So now, when you access in the transpose (say accessing elements in the first column), it will access as (18+1)%16 = 3, and you'll access banks 3, 6, 9, 12, 15, 2, 5, 8 etc, so you should get no conflicts.
The particular alignment shift due to having a matrix of size 18 isn't the problem, because the starting point of the array makes no difference, it's only the order in which you access it. If you want to flatten the arrays I've proposed above, and merge them into 1, that's fine, as long as you access them in a similar fashion.