Analysing time complexity when input is doubling for merge sort - time-complexity

I'm trying to theoretically understand how much longer it would take when the input size passed to merge sort is doubled. I was a reading a textbook which stated that:
"Since the runtime for mergesort (for large N) is O(N log_2 N), we should consider the ratio, r = N^{1.1} log_2(N^{1.1})/(N log_2(N)). This simplifies to 1.1 N^{0.1} which is around 3.5"
I wanted to asked how they computed that it would take roughly 3.5 times longer for merge sort to execute when input size is doubled. Essentially, how they want about that transformation.

Using logarithm arithmetic:
which still depends on N.
My guess is that they assumed that a large number for N is 100000 so:

Related

An example to show that amortized analysis and average-case analysis may give asymptotically different results

I have read many explanations of amortized analysis and how it differs from average-case analysis. However, I have not found a single explanation that showed how, for a particular example for which both kinds of analysis are sensible, the two would give asymptotically different results.
The most wide-spread example of amortized running time analysis shows that appending an element to a dynamic array takes O(1) amortized time (where the running time of the operation is O(n) if the array's length is an exact power of 2, and O(1) otherwise). I believe that, if we consider all array lengths equally likely, then the average-case analysis will give the same O(1) answer.
So, could you please provide an example to show that amortized analysis and average-case analysis may give asymptotically different results?
Consider a dynamic array supporting push and pop from the end. In this example, the array capacity will double when push is called on a full array and halve when pop leaves the array size 1/2 of the capacity. pop on an empty array does nothing.
Note that this is not how dynamic arrays are "supposed" to work. To maintain O(1) amortized complexity, the array capacity should only halve when the size is alpha times the capacity, for alpha < 1/2.
In the bad dynamic array, when considering both operations, neither has O(1) amortized complexity, because alternating between them when the capacity is near 2x the size can produce Ω(n) time complexity for both operations repeatedly.
However, if you consider all sequences of push and pop to be equally likely, both operations have O(1) average time complexity, for two reasons:
First, since the sequences are random, I believe the size of the array will mostly be O(1). This is a random walk on the natural numbers.
Second, the array will be near size a power of 2 only rarely.
This shows an example where amortized complexity is strictly greater than average complexity.
They never have different asymptotically different results. average-case means that weird data might not trigger the average case and might be slower. asymptotic analysis means that even weird data will have the same performance. But on average they'll always have the same complexity.
Where they differ is the worst-case analysis. For algorithms where slowdowns come every few items regardless of their values, then the worst-case and the average-case are the same, and we often call this "asymptotic analysis". For algorithms that can have slowdowns based on the data itself, the worst-case and average-case are different, and we do not call either "asymptotic".
In "Pairing Heaps with Costless Meld", the author gives a priority queue with O(0) time per meld. Obviously, the average time per meld is greater than that.
Consider any data structure with worst-case and best-case inserts and removes taking I and R time. Now use the physicist's argument and give the structure a potential of nR, where n is the number of values in the structure. Each insert increases the potential by R, so the total amortized cost of an insert is I+R. However, each remove decreases the potential by R. Thus, each removal has an amortized cost of R-R=0!
The average cost is R; the amortized cost is 0; these are different.

Time complexity with respect to input

This is a constant doubt I'm having. For example, I have a 2-d array of size n^2 (n being the number of rows and columns). Suppose I want to print all the elements of the 2-d array. When I calculate the time complexity of the algorithm with respect to n it's O(n^2 ). But if I calculated the time with respect to the input size (n^2 ) it's linear. Are both these calculations correct? If so, why do people only use O(n^2 ) everywhere regarding 2-d arrays?
That is not how time complexity works. You cannot do "simple math" like that.
A two-dimensional square array of extent x has n = x*x elements. Printing these n elements takes n operations (or n/m if you print m items at a time), which is O(N). The necessary work increases linearly with the number of elements (which is, incidentially, quadratic in respect of the array extent -- but if you arranged the same number of items in a 4-dimensional array, would it be any different? Obviously, no. That doesn't magically make it O(N^4)).
What you use time complexity for is not stuff like that anyway. What you want time complexity to tell you is an approximate idea of how some particular algorithm may change its behavior if you grow the number of inputs beyond some limit.
So, what you want to know is, if you do XYZ on one million items or on two million items, will it take approximately twice as long, or will it take approximately sixteen times as long, for example.
Time complexity analysis is irrespective of "small details" such as how much time an actual operations takes. Which tends to make the whole thing more and more academic and practically useless in modern architectures because constant factors (such as memory latency or bus latency, cache misses, faults, access times, etc.) play an ever-increasing role as they stay mostly the same over decades while the actual cost-per-step (instruction throughput, ALU power, whatever) goes down steadily with every new computer generation.
In practice, it happens quite often that the dumb, linear, brute force approach is faster than a "better" approach with better time complexity simply because the constant factor dominates everything.

When analyzing the worst case time complexity of search algorithms using Big O notation, why is the variable representing the input nonexistent?

Thanks for your willingness to help.
Straight to the point, I'm confused with the use of Big O notation when analyzing the worst case time complexity of search algorithms.
For example, the worst case time complexity of Alpha-Beta Pruning is O(b^d) where ^ means ~ to the power of ~, b representing the average branching factor and d representing the depth of the search tree.
I do get that the worst case time complexity would be less or equal to a positive constant multiplied by b^d, but why is the use of big O notation permitted here? Where did the variable n, the input size, go? I do know that the input of same size might cause significant difference in time complexity of an algorithm.
All of the research I've done only explains "the use of big o notation in the analysis of worst case time complexity" in terms of the growth function, a function that has variable y as time complexity and variable x as input size. There are also formal definitions of big o notation, which make me even more confused with the question above. definition 1definition 2
Any attempts to answer my question would be greatly appreciated.
The input size you refer here to n is in this case d. If n is the amount of entries in your tree, d can be calculated by ln_2(n), assuming your tree is a balanced binary tree.
Big O notation implies that you are discussing what the runtime would be for a very large n. In the case you noted, O(b^d), the n is the variable that changes with input size. In this case, d would be your n. As you've found, some notations make use of many variables.
n is just a general term for the number of elements, but runtime could vary on many factors- depth of a tree, or a different list entirely. For example, to traverse lists like this:
for n in firstList:
for k in secondList:
do stuff
the cost would be O(n*k).

Determine the running time of an algorithm with two parameters

I have implemented an algorithm that uses two other algorithms for calculating the shortest path in a graph: Dijkstra and Bellman-Ford. Based on the time complexity of the these algorithms, I can calculate the running time of my implementation, which is easy giving the code.
Now, I want to experimentally verify my calculation. Specifically, I want to plot the running time as a function of the size of the input (I am following the method described here). The problem is that I have two parameters - number of edges and number of vertices.
I have tried to fix one parameter and change the other, but this approach results in two plots - one for varying number of edges and the other for varying number of vertices.
This leads me to my question - how can I determine the order of growth based on two plots? In general, how can one experimentally determine the running time complexity of an algorithm that has more than one parameter?
It's very difficult in general.
The usual way you would experimentally gauge the running time in the single variable case is, insert a counter that increments when your data structure does a fundamental (putatively O(1)) operation, then take data for many different input sizes, and plot it on a log-log plot. That is, log T vs. log N. If the running time is of the form n^k you should see a straight line of slope k, or something approaching this. If the running time is like T(n) = n^{k log n} or something, then you should see a parabola. And if T is exponential in n you should still see exponential growth.
You can only hope to get information about the highest order term when you do this -- the low order terms get filtered out, in the sense of having less and less impact as n gets larger.
In the two variable case, you could try to do a similar approach -- essentially, take 3 dimensional data, do a log-log-log plot, and try to fit a plane to that.
However this will only really work if there's really only one leading term that dominates in most regimes.
Suppose my actual function is T(n, m) = n^4 + n^3 * m^3 + m^4.
When m = O(1), then T(n) = O(n^4).
When n = O(1), then T(n) = O(m^4).
When n = m, then T(n) = O(n^6).
In each of these regimes, "slices" along the plane of possible n,m values, a different one of the terms is the dominant term.
So there's no way to determine the function just from taking some points with fixed m, and some points with fixed n. If you did that, you wouldn't get the right answer for n = m -- you wouldn't be able to discover "middle" leading terms like that.
I would recommend that the best way to predict asymptotic growth when you have lots of variables / complicated data structures, is with a pencil and piece of paper, and do traditional algorithmic analysis. Or possibly, a hybrid approach. Try to break the question of efficiency into different parts -- if you can split the question up into a sum or product of a few different functions, maybe some of them you can determine in the abstract, and some you can estimate experimentally.
Luckily two input parameters is still easy to visualize in a 3D scatter plot (3rd dimension is the measured running time), and you can check if it looks like a plane (in log-log-log scale) or if it is curved. Naturally random variations in measurements plays a role here as well.
In Matlab I typically calculate a least-squares solution to two-variable function like this (just concatenates different powers and combinations of x and y horizontally, .* is an element-wise product):
x = log(parameter_x);
y = log(parameter_y);
% Find a least-squares fit
p = [x.^2, x.*y, y.^2, x, y, ones(length(x),1)] \ log(time)
Then this can be used to estimate running times for larger problem instances, ideally those would be confirmed experimentally to know that the fitted model works.
This approach works also for higher dimensions but gets tedious to generate, maybe there is a more general way to achieve that and this is just a work-around for my lack of knowledge.
I was going to write my own explanation but it wouldn't be any better than this.

approximating log10[x^k0 + k1]

Greetings. I'm trying to approximate the function
Log10[x^k0 + k1], where .21 < k0 < 21, 0 < k1 < ~2000, and x is integer < 2^14.
k0 & k1 are constant. For practical purposes, you can assume k0 = 2.12, k1 = 2660. The desired accuracy is 5*10^-4 relative error.
This function is virtually identical to Log[x], except near 0, where it differs a lot.
I already have came up with a SIMD implementation that is ~1.15x faster than a simple lookup table, but would like to improve it if possible, which I think is very hard due to lack of efficient instructions.
My SIMD implementation uses 16bit fixed point arithmetic to evaluate a 3rd degree polynomial (I use least squares fit). The polynomial uses different coefficients for different input ranges. There are 8 ranges, and range i spans (64)2^i to (64)2^(i + 1).
The rational behind this is the derivatives of Log[x] drop rapidly with x, meaning a polynomial will fit it more accurately since polynomials are an exact fit for functions that have a derivative of 0 beyond a certain order.
SIMD table lookups are done very efficiently with a single _mm_shuffle_epi8(). I use SSE's float to int conversion to get the exponent and significand used for the fixed point approximation. I also software pipelined the loop to get ~1.25x speedup, so further code optimizations are probably unlikely.
What I'm asking is if there's a more efficient approximation at a higher level?
For example:
Can this function be decomposed into functions with a limited domain like
log2((2^x) * significand) = x + log2(significand)
hence eliminating the need to deal with different ranges (table lookups). The main problem I think is adding the k1 term kills all those nice log properties that we know and love, making it not possible. Or is it?
Iterative method? don't think so because the Newton method for log[x] is already a complicated expression
Exploiting locality of neighboring pixels? - if the range of the 8 inputs fall in the same approximation range, then I can look up a single coefficient, instead of looking up separate coefficients for each element. Thus, I can use this as a fast common case, and use a slower, general code path when it isn't. But for my data, the range needs to be ~2000 before this property hold 70% of the time, which doesn't seem to make this method competitive.
Please, give me some opinion, especially if you're an applied mathematician, even if you say it can't be done. Thanks.
You should be able to improve on least-squares fitting by using Chebyshev approximation. (The idea is, you're looking for the approximation whose worst-case deviation in a range is least; least-squares instead looks for the one whose summed squared difference is least.) I would guess this doesn't make a huge difference for your problem, but I'm not sure -- hopefully it could reduce the number of ranges you need to split into, somewhat.
If there's already a fast implementation of log(x), maybe compute P(x) * log(x) where P(x) is a polynomial chosen by Chebyshev approximation. (Instead of trying to do the whole function as a polynomial approx -- to need less range-reduction.)
I'm an amateur here -- just dipping my toe in as there aren't a lot of answers already.
One observation:
You can find an expression for how large x needs to be as a function of k0 and k1, such that the term x^k0 dominates k1 enough for the approximation:
x^k0 +k1 ~= x^k0, allowing you to approximately evaluate the function as
k0*Log(x).
This would take care of all x's above some value.
I recently read how the sRGB model compresses physical tri stimulus values into stored RGB values.
It basically is very similar to the function I try to approximate, except that it's defined piece wise:
k0 x, x < 0.0031308
k1 x^0.417 - k2 otherwise
I was told the constant addition in Log[x^k0 + k1] was to make the beginning of the function more linear. But that can easily be achieved with a piece wise approximation. That would make the approximation a lot more "uniform" - with only 2 approximation ranges. This should be cheaper to compute due to no longer needing to compute an approximation range index (integer log) and doing SIMD coefficient lookup.
For now, I conclude this will be the best approach, even though it doesn't approximate the function precisely. The hard part will be proposing this change and convincing people to use it.