What INCLUDE() function does when creating index in MS SQL Server? - sql

What is the difference between creating an index using INCLUDE function vs not?
What would be the difference between the following two indexes?
CREATE NONCLUSTERED INDEX SomeName ON SomeTable (
ColumnA
,ColumnB
,ColumnC
,ColumnD
) INCLUDE (
ColumnE
,ColumnF
,ColumnG
)
vs
CREATE INDEX SomeName ON SomeTable (
ColumnA
,ColumnB
,ColumnC
,ColumnD
,ColumnE
,ColumnF
,ColumnG
)

The INCLUDE clause adds the data at the lowest/leaf level, rather than in the index tree. This makes the index smaller because it's not part of the tree.
INCLUDE columns are not key columns in the index, so they are not ordered. This means it isn't really useful for predicates, sorting etc.. However, it may be useful if you have a residual lookup in a few rows from the key columns.
INCLUDE columns are not key columns in the index, so they are not ordered. This makes them not typically useful for JOINs or sorting. And because they are not key columns, they don't sit in the whole B-tree structure like key columns
By adding Include (or nonkey)columns, you can create nonclustered indexes that cover more queries. This is because the nonkey columns have the following benefits:
They can be data types not allowed as index key columns.
They are not considered by the Database Engine when calculating the number of index key columns or index key size.
An index with Included columns can significantly improve query performance when all columns in the query are included in the index either as key or nonkey columns. Performance gains are achieved because the query optimizer can locate all the column values within the index; table or clustered index data is not accessed resulting in fewer disk I/O operations.
For more info refer Microsoft docs: Create Indexes with Included Columns

When an execution plan uses an index, it has access to all the columns in the index. If all the columns from a given table are in the index, there is no need to refer to the original data pages. Eliminating that data page lookup is a gain in efficiency.
However, including columns in indexes has overhead for the indexing structure itself (this is in addition to duplicating the values).
The INCLUDE keyword allows for column values to be in the index, without incurring the overhead of the additional indexing structure. The purpose is to resolve queries without having to look up the column information on the original data pages.

Related

Does PostgreSQL use all available indexes to run a query faster?

We are structuring a project where some tables will have many records, and we intend to use 4 numeric foreign keys and 1 numeric primary, our assumption is that if we create an index for each foreign key and the default index of the primary key, the postgres planning would use all the starts (5 in total) to perform the query.
95% of the time the queries would be providing at least the 4 foreign keys.
Would each index be used to position the search faster in the sequential section of records?
Would having 4 indexes increase the speed of the query or would it suffice with a single index of the parent level (branch_id)?
Thank you for your time and experience.
example: if all foreign keys have an index
SELECT * FROM products WHERE
account_d=1 AND
organization_id=2 AND
business_id=3 AND
branch_id=4 AND
product_id=5;
example: if I only indicate the id of the primary key
SELECT * FROM products WHERE product_id=5;
If all 4 columns are specified by equality, it is possible to combine the single-column indexes using BitmapAnd. However, this would be less efficient than using one multi-column index on all four columns.
Since that will apparently be a very common query, it would make sense to have that multi-column index.
Usually you will want to index each foreign key column. Otherwise, if you want to delete an organization, for example, it would need to scan the whole table to verify that no records were still referencing it. Whichever column is the first one in the multi-column index will not need to also have a single-column index for it. But the other 3 which are not first probably still need their own indexes.
Indexes are (predominantly) used when filtering or joining tables, so whether the indexes you are proposing are useful is entirely dependent on the SQL you are running and whether the query optimiser determines that using an index would be beneficial.
For example, if you ran SELECT * FROM TABLE then none of the indexes would be used.
I can’t comment on Postgresql specifically but many/most DBMSs automatically create indexes when you define PKs/FKs - so you will get the indexes anyway, regardless of any performance tuning you are trying to implement
Update
Having individual indexes on each column is not going to help with the query you’ve provided, the optimiser will only use one of them, probably the PK. A compound index on multiple columns would help, but the more columns you add to the index, the more restrictive the pattern of queries it will benefit.
Say you have 3 columns A, B, C and include them all in WHERE clause, then having a compound index of A+B+C would be highly beneficial.
If you keep this index but your WHERE clause only has columns A, B it will still benefit significantly as the query can still use the A+B subset of the index.
If your WHERE clause only has columns A,C then it would benefit only slightly, as it would select all records from the index that start with the A value - but then would have to filter them to find the subset with the C value

SQL Server non-clustered index

I have two different queries in SQL Server and I want to clarify
how the execution plan would be different, and
which of them is more efficient
Queries:
SELECT *
FROM table_name
WHERE column < 2
and
SELECT column
FROM table_name
WHERE column < 2
I have a non-clustered index on column.
I used to use Postgresql and I am not familiar with SQL Server and these kind of indexes.
As I read many questions here I kept two notes:
When I have a non-clustered index, I need one more step in order to have access to data
With a non-clustered index I could have a copy of part of the table and I get a quicker response time.
So, I got confused.
One more question is that when I have "SELECT *" which is the influence of a non-clustered index?
1st query :
Depending on the size of the data you might face lookup issues such as Key lookup and RID lookups .
2nd query :
It will be faster because it will not fetch columns that are not part of the index , though i recommend using covering index ..
I recommend you check this blog post
The first select will use the non-clustered index to find the clustering key [clustered index exists] or page and slot [no clustered index]. Then that will be used to get the row. The query plan will be different depending on your STATS (the data).
The second query is "covered" by the non-clustered index. What that means is that the non-clustered index contains all of the data that you are selecting. The clustering key is not needed, and the clustered index and/or heap is not needed to provide data to the select list.

Why NonClustered index scan faster than Clustered Index scan?

As I know, heap tables are tables without clustered index and has no physical order.
I have a heap table "scan" with 120k rows and I am using this select:
SELECT id FROM scan
If I create a non-clustered index for the column "id", I get 223 physical reads.
If I remove the non-clustered index and alter the table to make "id" my primary key (and so my clustered index), I get 515 physical reads.
If the clustered index table is something like this picture:
Why Clustered Index Scans workw like the table scan? (or worse in case of retrieving all rows). Why it is not using the "clustered index table" that has less blocks and already has the ID that I need?
SQL Server indices are b-trees. A non-clustered index just contains the indexed columns, with the leaf nodes of the b-tree being pointers to the approprate data page. A clustered index is different: its leaf nodes are the data page itself and the clustered index's b-tree becomes the backing store for the table itself; the heap ceases to exist for the table.
Your non-clustered index contains a single, presumably integer column. It's a small, compact index to start with. Your query select id from scan has a covering index: the query can be satisfied just by examining the index, which is what is happening. If, however, your query included columns not in the index, assuming the optimizer elected to use the non-clustered index, an additional lookup would be required to fetch the data pages required, either from the clustering index or from the heap.
To understand what's going on, you need to examine the execution plan selected by the optimizer:
See Displaying Graphical Execution Plans
See Red Gate's SQL Server Execution Plans, by Grant Fritchey
A clustered index generally is about as big as the same data in a heap would be (assuming the same page fullness). It should use just a little more reads than a heap would use because of additional B-tree levels.
A CI cannot be smaller than a heap would be. I don't see why you would think that. Most of the size of a partition (be it a heap or a tree) is in the data.
Note, that less physical reads does not necessarily translate to a query being faster. Random IO can be 100x slower than sequential IO.
When to use Clustered Index-
Query Considerations:
1) Return a range of values by using operators such as BETWEEN, >, >=, <, and <= 2) Return large result sets
3) Use JOIN clauses; typically these are foreign key columns
4) Use ORDER BY, or GROUP BY clauses. An index on the columns specified in the ORDER BY or GROUP BY clause may remove the need for the Database Engine to sort the data, because the rows are already sorted. This improves query performance.
Column Considerations :
Consider columns that have one or more of the following attributes:
1) Are unique or contain many distinct values
2) Defined as IDENTITY because the column is guaranteed to be unique within the table
3) Used frequently to sort the data retrieved from a table
Clustered indexes are not a good choice for the following attributes:
1) Columns that undergo frequent changes
2) Wide keys
When to use Nonclustered Index-
Query Considerations:
1) Use JOIN or GROUP BY clauses. Create multiple nonclustered indexes on columns involved in join and grouping operations, and a clustered index on any foreign key columns.
2) Queries that do not return large result sets
3) Contain columns frequently involved in search conditions of a query, such as WHERE clause, that return exact matches
Column Considerations :
Consider columns that have one or more of the following attributes:
1) Cover the query. For more information, see Index with Included Columns
2) Lots of distinct values, such as a combination of last name and first name, if a clustered index is used for other columns
3) Used frequently to sort the data retrieved from a table
Database Considerations:
1) Databases or tables with low update requirements, but large volumes of data can benefit from many nonclustered indexes to improve query performance.
2) Online Transaction Processing applications and databases that contain heavily updated tables should avoid over-indexing. Additionally, indexes should be narrow, that is, with as few columns as possible.
Try running
DBCC DROPCLEANBUFFERS
Before the queries...
If you really want to compare them.
Physical reads don't mean the same as logical reads when optimizing a query

Decision when to create Index on table column in database?

I am not db guy. But I need to create tables and do CRUD operations on them. I get confused should I create the index on all columns by default
or not? Here is my understanding which I consider while creating index.
Index basically contains the memory location range ( starting memory location where first value is stored to end memory location where last value is
stored). So when we insert any value in table index for column needs to be updated as it has got one more value but update of column
value wont have any impact on index value. Right? So bottom line is when my column is used in join between two tables we should consider
creating index on column used in join but all other columns can be skipped because if we create index on them it will involve extra cost of
updating index value when new value is inserted in column.Right?
Consider this scenario where table mytable contains two three columns i.e col1,col2,col3. Now we fire this query
select col1,col2 from mytable
Now there are two cases here. In first case we create the index on col1 and col2. In second case we don't create any index.** As per my understanding
case 1 will be faster than case2 because in case 1 we oracle can quickly find column memory location. So here I have not used any join columns but
still index is helping here. So should I consider creating index here or not?**
What if in the same scenario above if we fire
select * from mytable
instead of
select col1,col2 from mytable
Will index help here?
Don't create Indexes in every column! It will slow things down on insert/delete/update operations.
As a simple reminder, you can create an index in columns that are common in WHERE, ORDER BY and GROUP BY clauses. You may consider adding an index in colums that are used to relate other tables (through a JOIN, for example)
Example:
SELECT col1,col2,col3 FROM my_table WHERE col2=1
Here, creating an index on col2 would help this query a lot.
Also, consider index selectivity. Simply put, create index on values that has a "big domain", i.e. Ids, names, etc. Don't create them on Male/Female columns.
but update of column value wont have any impact on index value. Right?
No. Updating an indexed column will have an impact. The Oracle 11g performance manual states that:
UPDATE statements that modify indexed columns and INSERT and DELETE
statements that modify indexed tables take longer than if there were
no index. Such SQL statements must modify data in indexes and data in
tables. They also create additional undo and redo.
So bottom line is when my column is used in join between two tables we should consider creating index on column used in join but all other columns can be skipped because if we create index on them it will involve extra cost of updating index value when new value is inserted in column. Right?
Not just Inserts but any other Data Manipulation Language statement.
Consider this scenario . . . Will index help here?
With regards to this last paragraph, why not build some test cases with representative data volumes so that you prove or disprove your assumptions about which columns you should index?
In the specific scenario you give, there is no WHERE clause, so a table scan is going to be used or the index scan will be used, but you're only dropping one column, so the performance might not be that different. In the second scenario, the index shouldn't be used, since it isn't covering and there is no WHERE clause. If there were a WHERE clause, the index could allow the filtering to reduce the number of rows which need to be looked up to get the missing column.
Oracle has a number of different tables, including heap or index organized tables.
If an index is covering, it is more likely to be used, especially when selective. But note that an index organized table is not better than a covering index on a heap when there are constraints in the WHERE clause and far fewer columns in the covering index than in the base table.
Creating indexes with more columns than are actually used only helps if they are more likely to make the index covering, but adding all the columns would be similar to an index organized table. Note that Oracle does not have the equivalent of SQL Server's INCLUDE (COLUMN) which can be used to make indexes more covering (it's effectively making an additional clustered index of only a subset of the columns - useful if you want an index to be unique but also add some data which you don't want to be considered in the uniqueness but helps to make it covering for more queries)
You need to look at your plans and then determine if indexes will help things. And then look at the plans afterwards to see if they made a difference.

What is a Covered Index?

I've just heard the term covered index in some database discussion - what does it mean?
A covering index is an index that contains all of, and possibly more, the columns you need for your query.
For instance, this:
SELECT *
FROM tablename
WHERE criteria
will typically use indexes to speed up the resolution of which rows to retrieve using criteria, but then it will go to the full table to retrieve the rows.
However, if the index contained the columns column1, column2 and column3, then this sql:
SELECT column1, column2
FROM tablename
WHERE criteria
and, provided that particular index could be used to speed up the resolution of which rows to retrieve, the index already contains the values of the columns you're interested in, so it won't have to go to the table to retrieve the rows, but can produce the results directly from the index.
This can also be used if you see that a typical query uses 1-2 columns to resolve which rows, and then typically adds another 1-2 columns, it could be beneficial to append those extra columns (if they're the same all over) to the index, so that the query processor can get everything from the index itself.
Here's an article: Index Covering Boosts SQL Server Query Performance on the subject.
Covering index is just an ordinary index. It's called "covering" if it can satisfy query without necessity to analyze data.
example:
CREATE TABLE MyTable
(
ID INT IDENTITY PRIMARY KEY,
Foo INT
)
CREATE NONCLUSTERED INDEX index1 ON MyTable(ID, Foo)
SELECT ID, Foo FROM MyTable -- All requested data are covered by index
This is one of the fastest methods to retrieve data from SQL server.
Covering indexes are indexes which "cover" all columns needed from a specific table, removing the need to access the physical table at all for a given query/ operation.
Since the index contains the desired columns (or a superset of them), table access can be replaced with an index lookup or scan -- which is generally much faster.
Columns to cover:
parameterized or static conditions; columns restricted by a parameterized or constant condition.
join columns; columns dynamically used for joining
selected columns; to answer selected values.
While covering indexes can often provide good benefit for retrieval, they do add somewhat to insert/ update overhead; due to the need to write extra or larger index rows on every update.
Covering indexes for Joined Queries
Covering indexes are probably most valuable as a performance technique for joined queries. This is because joined queries are more costly & more likely then single-table retrievals to suffer high cost performance problems.
in a joined query, covering indexes should be considered per-table.
each 'covering index' removes a physical table access from the plan & replaces it with index-only access.
investigate the plan costs & experiment with which tables are most worthwhile to replace by a covering index.
by this means, the multiplicative cost of large join plans can be significantly reduced.
For example:
select oi.title, c.name, c.address
from porderitem poi
join porder po on po.id = poi.fk_order
join customer c on c.id = po.fk_customer
where po.orderdate > ? and po.status = 'SHIPPING';
create index porder_custitem on porder (orderdate, id, status, fk_customer);
See:
http://literatejava.com/sql/covering-indexes-query-optimization/
Lets say you have a simple table with the below columns, you have only indexed Id here:
Id (Int), Telephone_Number (Int), Name (VARCHAR), Address (VARCHAR)
Imagine you have to run the below query and check whether its using index, and whether performing efficiently without I/O calls or not. Remember, you have only created an index on Id.
SELECT Id FROM mytable WHERE Telephone_Number = '55442233';
When you check for performance on this query you will be dissappointed, since Telephone_Number is not indexed this needs to fetch rows from table using I/O calls. So, this is not a covering indexed since there is some column in query which is not indexed, which leads to frequent I/O calls.
To make it a covered index you need to create a composite index on (Id, Telephone_Number).
For more details, please refer to this blog:
https://www.percona.com/blog/2006/11/23/covering-index-and-prefix-indexes/