Let's begin with the premise that I'm newly approaching to TensorFlow and deep learning in general.
I have TF 2.0 Keras-style model trained using tf.Model.train(), two available GPUs and I'm looking to scale down inference times.
I trained the model distributing across GPUs using the extremely handy tf.distribute.MirroredStrategy().scope() context manager
mirrored_strategy = tf.distribute.MirroredStrategy()
with mirrored_strategy.scope():
model.compile(...)
model.train(...)
both GPUs get effectively used (even if I'm not quite happy with the results accuracy).
I can't seem to find a similar strategy for distributing inference between GPUs with the tf.Model.predict() method: when i run model.predict() I get (obviously) usage from only one of the two GPUs.
Is it possible to istantiate the same model on both GPUs and feed them different chunks of data in parallel?
There are posts that suggest how to do it in TF 1.x but I can't seem to replicate the results in TF2.0
https://medium.com/#sbp3624/tensorflow-multi-gpu-for-inferencing-test-time-58e952a2ed95
Tensorflow: simultaneous prediction on GPU and CPU
my mental struggles with the question are mainly
TF 1.x is tf.Session()based while sessions are implicit in TF2.0, if I get it correctly, the solutions I read use separate sessions for each GPU and I don't really know how to replicate it in TF2.0
I don't know how to use the model.predict() method with a specific session.
I know that the question is probably not well-formulated but I summarize it as:
Does anybody have a clue on how to run Keras-style model.predict() on multiple GPUs (inferencing on a different batch of data on each GPU in a parallel way) in TF2.0?
Thanks in advance for any help.
Try to load model in tf.distribute.MirroredStrategy and use greater batch_size
mirrored_strategy = tf.distribute.MirroredStrategy()
with mirrored_strategy.scope():
model = tf.keras.models.load_model(saved_model_path)
result = model.predict(batch_size=greater_batch_size)
There still does not seem to be an official example for distributed inference. There is a potential solution here using tf.distribute.MirroredStrategy: https://github.com/tensorflow/tensorflow/issues/37686. However, it does not seem to fully utilize multi gpus
Hi I am trying to train a model using the new bfloat16 datatype variables. I know this is supported in Google TPUs. I was wondering if anyone has tried training using GPUs (for example, GTX 1080 Ti). Is that even possible, whether the GPU tensor cores are supportive? If anyone has any experience please share your thoughts.
Many thanks!
I had posted this question in Tensorflow github community. Here is their response so far -
"
bfloat16 support isn't complete for GPUs, as it's not supported natively by the devices.
For performance you'll want to use float32 or float16 for GPU execution (though float16 can be difficult to train models with). TPUs support bfloat16 for effectively all operations (but you currently have to migrate your model to work on the TPU).
"
I am generating bottlenecks for a VGG16 model. I have a lot of data and am using 6 GPUs. It seems to be simple enough to train with multiple GPUs as of Keras 2.0.9. I tried just running multi_gpu_model(model, gpus=6) and then running predict_generator. And although my program is shown running on each GPU( Using nvidia-smi ) it seems to be generating on CPU. Is there any way for me to easily run predict_generator on multiple GPUs? (Although I have a bad feeling Ill have to 'rewrite' my own version of multi_gpu_model), If I was to implement this myself would the best way to do this be to make a thread for each GPU that will run the predict_generator on a separate batch?
Sorry If I have missed something obvious.
I am making a neural network using tensorflow and I ran into a problem trying to use a generator to split my data up, basically it's too slow.
My training data consists of 52x52 numpy arrays. I need to split each array into a 52x52x3 array before I input it into my NN. As mentioned I have a generator working that does this, but I noticed that even though my NN is running on the GPU my GPU usage is very low (under 10% usually). I think this might be caused by me doing the generator on the CPU.
Is there any way of running my generator on the GPU?
What I tried:
- I thought of trying to use pyCUDA in order to program the generator on the GPU but found that tensorflow and pyCUDA don't support each other
-I tried using the from_generator function from the Dataset API as mentioned here:
https://www.tensorflow.org/api_docs/python/tf/contrib/data/Dataset
But while having issues with it I ran into this github thread mentioning that this function isn't supported to run on the GPU anyway:
https://github.com/tensorflow/tensorflow/issues/13610
Any help would be greatly appreciated.
UPDATE: I have to re-write this question as after some investigation I realise that this is a different problem.
Context: running keras in a gridsearch setting using the kerasclassifier wrapper with scikit learn. Sys: Ubuntu 16.04, libraries: anaconda distribution 5.1, keras 2.0.9, scikitlearn 0.19.1, tensorflow 1.3.0 or theano 0.9.0, using CPUs only.
Code:
I simply used the code here for testing: https://machinelearningmastery.com/use-keras-deep-learning-models-scikit-learn-python/, the second example 'Grid Search Deep Learning Model Parameters'. Pay attention to line 35, which reads:
grid = GridSearchCV(estimator=model, param_grid=param_grid)
Symptoms: When grid search uses more than 1 jobs (means cpus?), e.g.,, setting 'n_jobs' on the above line A to '2', line below:
grid = GridSearchCV(estimator=model, param_grid=param_grid, n_jobs=2)
will cause the code to hang indefinitely, either with tensorflow or theano, and there is no cpu usage (see attached screenshot, where 5 python processes were created but none is using cpu).
By debugging, it appears to be the following line with 'sklearn.model_selection._search' that causes problems:
line 648: for parameters, (train, test) in product(candidate_params,
cv.split(X, y, groups)))
, on which the program hangs and cannot continue.
I would really appreciate some insights as to what this means and why this could happen.
Thanks in advance
Are you using a GPU? If so, you can't have multiple threads running each variation of the params because they won't be able to share the GPU.
Here's a full example on how to use keras, sklearn wrappers in a Pipeline with GridsearchCV: Pipeline with a Keras Model
If you really want to have multiple jobs in the GridSearchCV, you can try to limit the GPU fraction used by each job (e.g. if each job only allocates 0.5 of the available GPU memory, you can run 2 jobs simultaneously)
See these issues:
Limit the resource usage for tensorflow backend
GPU memory fraction does not work in keras 2.0.9 but it works in 2.0.8
I dealt with this problem too and it really slowed me down not being able to run what is essentially trivially-parallelizable code. The issue is indeed with the tensorflow session. If a session in created in the parent process before GridSearchCV.fit(), it will hang!
The solution for me was to keep all session/graph creation code restricted to the KerasClassifer class and the model creation function i passed to it.
Also what Felipe said about the memory is true, you will want to restrict the memory usage of TF in either the model creation function or a subclass of KerasClassifier.
Related info:
Session hang issue with python multiprocessing
Keras + Tensorflow and Multiprocessing in Python
TL;DR Answer: You can't because your Keras model can't be serialized, and serialization is needed for parallelizing in Python with joblib.
This problem is much detailed here: https://www.neuraxle.org/stable/scikit-learn_problems_solutions.html#problem-you-can-t-parallelize-nor-save-pipelines-using-steps-that-can-t-be-serialized-as-is-by-joblib
The solution to parallelize your code is to make your Keras estimator serializable. This can be done using savers as described at the link above.
If you're lucky enough to be using TensorFlow v2's prebuilt Keras module, the following practical code sample will reveal to be useful to you as you'd practically just need to take the code and modify it with yours:
https://github.com/guillaume-chevalier/seq2seq-signal-prediction
In this example, all the saving and loading code is all pre-written for you using Neuraxle-TensorFlow, and this makes it parallelizeable if you use Neuraxle's AutoML methods (e.g.: Neuraxle's grid search and Neuraxle's own parallelism things).