Objective-c "multiple" getters and binding - objective-c

I have a class that holds some information and one member is a property options (an NSUInteger). The individual bits of options should be accessible through property getters and setters, to be value-bound to checkboxes:
#define OP_CHAN_TAG 12
#interface MuxConfig: NSObject
#property NSUInteger options;
#property (nonatomic) BOOL opTagBlocks;
#end
#implementation MuxConfig
- (BOOL) isOpTagBlocks
{
return (_options & (1 << OP_CHAN_TAG));
}
- (void) setOpTagBlocks:(BOOL)op
{
if (op)
_options |= (1 << OP_CHAN_TAG);
else
_options &= ~(1 << OP_CHAN_TAG);
}
#end
In this example, a checkbox has a value binding to opTagBlocks and an action handler to send the entire options property to a hardware device. This mechanism works. Another part of the application can receive the options from said device and stores them as one word into property options. And I was hoping that the checkbox(es) got updated but they don't. Obviously accessing property options does not 'trigger' the bitwise option handler(s).
So the big question is: how can I make this work?

The solution is to register dependent keys for your properties. Here is the documentation covering this: https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/KeyValueObserving/Articles/KVODependentKeys.html
So in your example above, adding
+ (NSSet *)keyPathsForValuesAffectingOptions {
return [NSSet setWithObjects:#"opTagBlocks",#"opTagWhatever",nil];
}
signals to the system that changes to opTagBlocks (and a second hypothetical property opTagWhatever to show how to add you other flags) also will change options.
You also need the reverse, and indicate that changes to options will also affect opTagBlocks:
+ (NSSet *)keyPathsForValuesAffectingOpTagBlocks {
return [NSSet setWithObjects:#"options",nil];
}
Alternatively you could implement + keyPathsForValuesAffectingValueForKey:, see the above documentation.

Got is working. It appears that
- (BOOL) isOpTagBlocks
{
return (_options & (1 << OP_CHAN_TAG));
}
needed to be changed into:
- (BOOL) opTagBlocks
{
return ((_options & (1 << OP_CHAN_TAG)) > 0);
}
Quite remarkable because the documentation says that boolean getters should start with "is" but this is not accepted by the KVO mechanism.
Regarding the returned value: checking against 0 is of course better but from the embedded world I live in, anything non-zero may be returned for a boolean result. Apparently not in Objective-C.

Related

Why does "conformsToProtocol" not check for "required" method implementations?

I am trying to enforce a "formal" #protocol, but cannot reliably test my classes/instances as to whether they ACTUALLY implement the protocol's "required" methods, vs. simply "declaring" that they conform to the protocol.
A complete example of my quandary…
#import <Foundation/Foundation.h>
#protocol RequiredProtocol
#required
- (NSString*) mustImplement; #end
#interface Cog : NSObject <RequiredProtocol> #end
#implementation Cog #end
#interface Sprocket : NSObject #end
#implementation Sprocket
- (NSString*) mustImplement
{ return #"I conform, but ObjC doesn't care!"; } #end
int main(int argc, char *argv[]) {
Protocol *required = #protocol(RequiredProtocol);
SEL requiredSEL = #selector(mustImplement);
void (^testProtocolConformance)(NSObject*) = ^(NSObject *x){
NSLog(#"Protocol:%#\n"
"Does %# class conform:%# \n"
"Do instances conform:%# \n"
"Required method's result:\"%#\"",
NSStringFromProtocol ( required ),
NSStringFromClass ( x.class ),
[x.class conformsToProtocol:required] ? #"YES" : #"NO",
[x conformsToProtocol:required] ? #"YES" : #"NO",
[x respondsToSelector:requiredSEL] ? [x mustImplement]
: nil );
};
testProtocolConformance ( Cog.new );
testProtocolConformance ( Sprocket.new );
}
Result:
Protocol:RequiredProtocol
Does Cog class conform:YES
Do instances conform:YES
Required method's result:"(null)"
Protocol:RequiredProtocol
Does Sprocket class conform:NO
Do instances conform:NO
Required method's result:"I conform, but ObjC doesn't care!"
Why is it that a class and it's instances that DO implement the #protocol's methods (Sprocket) return NO to conformsToProtocol?
And why does one that DOESN'T ACTUALLY conform, but SAYS that it DOES (Cog) return YES?
What is the point of a formal protocol if the declaration is all that's needed to feign conformance?
How can you ACTUALLY check for complete implementation of multiple #selectors without MULTIPLE calls to respondsToSelector?
#Josh Caswell.. Without diffing the two.. I'd guess that your response achieves similar effect to the category on NSObject I've been using in the meantime…
#implementation NSObject (ProtocolConformance)
- (BOOL) implementsProtocol:(id)nameOrProtocol {
Protocol *p = [nameOrProtocol isKindOfClass:NSString.class]
? NSProtocolFromString(nameOrProtocol)
: nameOrProtocol; // Arg is string OR protocol
Class klass = self.class;
unsigned int outCount = 0;
struct objc_method_description *methods = NULL;
methods = protocol_copyMethodDescriptionList( p, YES, YES, &outCount);
for (unsigned int i = 0; i < outCount; ++i) {
SEL selector = methods[i].name;
if (![klass instancesRespondToSelector: selector]) {
if (methods) free(methods); methods = NULL; return NO;
}
}
if (methods) free(methods); methods = NULL; return YES;
}
#end
Conforming to a protocol is just a "promise", you can't know if the receiver of conformsToProtocol: actually implements all the required methods. Is enough that you declare that the class conforms to the protocol using the angle brackets syntax, and conformsToProtocol: will return yes:
Discussion
A class is said to “conform to” a protocol if it adopts the protocol or inherits from another class that adopts it. Protocols are adopted by listing them within angle brackets after the interface declaration.
Full source: NSObject's conformsToProtocol: .
Protocols declarations have just the advantage that you can know at compile time if a class really adopts that required methods. If not, a warning will be given. I suggest to don't rely on conformsToProtocol:, but to use introspection instead. That is, verify if a class/object implements a method by calling instancesRespondToSelector: / respondsToSelector: :
+ (BOOL)instancesRespondToSelector:(SEL)aSelector;
- (BOOL)respondsToSelector:(SEL)aSelector;
What compiler are you using? Xcode/Clang issues 2 warnings and 1 error...
Think of a protocol as a club with membership requirements. Asking whether someone is a member of the club, provable by them having a membership card (NSObject<ReqiredProtocol>), should tell you that a person meets those requirements. However the lack of a membership doesn't mean they don't meet the requirements.
E.g. someone (Sprocket) might meet all the requirements to join but choose not to. Someone else (Cog) may failed to meet the requirements but a sloppy administrator might let them in.
The latter is why I asked about the compiler (the sloppy administrator ;-)). Try your code as entered on Xcode 4.6.3/Clang 4.2 produces warnings and errors (as does using GCC 4.2):
The warnings state that Cog fails to implement the required methods;
The error complains about [x mustImplement] as x is not known to have the required method as it is of type NSObject - you need to cast to remove that, just [(id)x mustImplement] will do as you've already tested the method exists.
In summary, you can only rely on conformsToProtocol if you know the originator of the code didn't ignore compiler warnings - the checking is done at compile time.
Addendum
I missed the last sentence of your question. If you wish to discover whether a class meets the requirements of a protocol, even if it doesn't declare that it does, e.g. Sprocket above (or if you are obtaining code from folk who ignore compiler warnings - the Cog author above), then you can do so using the facilities of the Obj-C runtime. And you'll only have to write one call to repsondsToSelector...
I just typed in the following and quickly tested it on your sample. It is not throughly tested by any means, caveat emptor etc. Code assumes ARC.
#import <objc/runtime.h>
#interface ProtocolChecker : NSObject
+ (BOOL) doesClass:(Class)aClass meetTheRequirementsOf:(Protocol *)aProtocol;
#end
#implementation ProtocolChecker
+ (BOOL) doesClass:(Class)aClass meetTheRequirementsOf:(Protocol *)aProtocol
{
struct objc_method_description *methods;
unsigned int count;
// required instance methods
methods = protocol_copyMethodDescriptionList(aProtocol, YES, YES, &count);
for (unsigned int ix = 0; ix < count; ix++)
{
if (![aClass instancesRespondToSelector:methods[ix].name])
{
free(methods);
return NO;
}
}
free(methods);
// required class methods
methods = protocol_copyMethodDescriptionList(aProtocol, YES, NO, &count);
for (unsigned int ix = 0; ix < count; ix++)
{
if (![aClass respondsToSelector:methods[ix].name])
{
free(methods);
return NO;
}
}
free(methods);
// other protocols
Protocol * __unsafe_unretained *protocols = protocol_copyProtocolList(aProtocol, &count);
for (unsigned int ix = 0; ix < count; ix++)
{
if (![self doesClass:aClass meetTheRequirementsOf:protocols[ix]])
{
free(protocols);
return NO;
}
}
free(protocols);
return YES;
}
#end
You should of course want to know exactly how this works, especially the * __unsafe_unretained * bit. That is left as an exercise :-)
CRD is right; the compiler tells you about actual conformance, and it should be listened to. If that's being ignored, the runtime doesn't have any built-in method to double-check. Classes maintain internal lists of protocol objects internally; conformsToProtocol: just looks at that.
At the risk that someone is going to come along and tell me to stop fiddling with the ##(%!^& runtime again, if you really truly need to check actual implementation, this is one way you can do so:
#import <objc/runtime.h>
BOOL classReallyTrulyDoesImplementAllTheRequiredMethodsOfThisProtocol(Class cls, Protocol * prtcl)
{
unsigned int meth_count;
struct objc_method_description * meth_list;
meth_list = protocol_copyMethodDescriptionList(p,
YES /*isRequired*/,
YES /*isInstanceMethod*/,
&meth_count);
/* Check instance methods */
for(int i = 0; i < meth_count; i++ ){
SEL methName = meth_list[i].name;
if( ![class instancesRespondToSelector:methName] ){
/* Missing _any_ required methods means failure */
free(meth_list);
return NO;
}
}
free(meth_list);
meth_list = protocol_copyMethodDescriptionList(p,
YES /*isRequired*/,
NO /*isInstanceMethod*/,
&meth_count);
/* Check class methods, if any */
for(int i = 0; i < meth_count; i++ ){
SEL methName = meth_list[i].name;
if( ![class respondsToSelector:methName] ){
free(meth_list);
return NO;
}
}
free(meth_list);
return YES;
}
If I had a hammer...
All of these answers are good. To them, I would add one more point: calling conformsToProtocol: is almost always a mistake. Because it tells whether the class says that it conforms to the protocol, rather than whether it actually provides specific methods:
It is possible to create a class that claims to conform, but does not, by silencing various warnings, resulting in crashes if you assume that a required method exists.
It is possible to create a class that conforms to the protocol but does not claim to do so, resulting in methods not getting called on a delegate even though they exist.
It can lead to programming errors creeping in when the protocol changes, because your code checks for conformance to a protocol before calling a method that used to be required, but no longer is.
All of these issues can cause unexpected behavior.
IMO, if you want to know if a class handles a method, the safest approach is to explicitly ask it if it handles that method (respondsToSelector:), rather than asking it if it conforms to a protocol that just happens to contain that method.
IMO, conformsToProtocol: should really have been a function in the Objective-C runtime instead of being exposed on NSObject, because it generally causes more problems than it solves.

Objective-C - iVar Scoped Method Variables?

I was messing around in Objective-C earlier, and I ran into a quite common situation:
I had a class, which was not a singleton, that needed a variable shared between method calls, like static, but each instance needed it's own variable. However, this variable only needed to be used in one particular method, we'll call it -foo.
What I'd love to do, is have a macro, let's call it ivar, which lets me do the following:
#implementation MyClass
-(foo)
{
ivar int someVal = 10; // default value, ivar scoped variable.
}
-(bar)
{
someVal = 5; // error, outside of `foo`'s scope.
}
#end
How the variable is defined does not matter to me (either a macro like OBJC_IVAR(Type, Name, Default) or ivar someType someName = value), as long as it meets the following requirements:
Has thread safety
Can have variable of same name (but different value) in another method
Type-less (doesn't matter what type the variable is)
Default Value support
Variable can be declared in one line (I shouldn't have to write 15 lines of code just to put a variable in my code)
I am currently working on an Objective-C++ implementation myself, I was just wondering if anyone else had any thoughts (or existing tools) on how to do this.
Obviously, this doesn't have to be done with a true iVar. More likely, this should be done with associated objects at run-time, which also manages deallocation for us.
After a lot of time spent, I believe I have a fully working solution in Objective-C++. Some of the features:
The variables are unique. As long as they have a different scope, their values are independent
Each instance has it's own values
Thread safety (accomplished by associated objects)
Simple variable declaration:
Macro overloading: only specify the information that you need
Possible ways to define an OBJC_IVAR:
OBJC_IVAR(); // creates a warning, does nothing
OBJC_IVAR(Name); // creates an ivar named 'Name' of type 'id'
OBJC_IVAR(Type, Name); // creates an ivar named 'Name' of type 'Type'
OBJC_IVAR(Type, Name, Default); // creates an ivar named 'Name', of type 'Type', and a default value of 'Default' (which is only executed once);
Full Type Support with C++ templates (__weak, __strong, __autoreleasing, volatile, etc. are all supported)
Subclasses do not share variables with their superclasses (so no chance for conflicts, variables really are limited to their scope).
Can be used in singletons without issue
Is fast, takes ~15-30 CPU cycles to look up a variable, and once it's looked up, takes as long as any other variable to set it.
Most of the hard work is done by the pre-processor, which allows for faster code
Just drag-and-drop into an existing Xcode project, doesn't rely on a custom processor
Some minor cons to the implementation:
Objects must have an ownership specifier (limitation with C++ references: Reference to non-const type 'id' with no explicit ownership). Is easily fixed by adding __strong, __weak, or __autoreleasing to the type of the variable
Implementation is hard to read. Because it relies so much on C++ templates and Objective-C working together in harmony, it's difficult to just change 'one thing' and hope for it to work. I have added extensive comments to the implementation, so hopefully that frees some of the burden.
Method swizzling can confuse this majorly. Not the largest of issues, but if you start playing around with method swizzling, don't be surprised if you get unexpected results.
Cannot be used inside a C++ object. Unfortunately, C++ doesn't support runtime attributes, like objective-c does, so we cannot rely upon our variables being cleaned up eventually. For this reason, you cannot use OBJC_IVAR while inside a C++ object. I would be interested in seeing an implementation for that, though.
#line can mess this up drastically, so don't use it.
Version History
1.0: Initial Release
1.1: Updated OBJC_IVAR_NAME to rely only on the preprocessor. As a result, we cannot use __func__.
So, without further ado, here is the code:
OBJC_IVAR.hpp
//
// OBJC_IVAR.h
// TestProj
//
// Created by Richard Ross on 8/17/12.
// Copyright (c) 2012 Ultimate Computer Services, Inc. All rights reserved.
//
#ifndef OBJC_IVAR_HPP
#define OBJC_IVAR_HPP
#import <Foundation/Foundation.h>
#import <objc/runtime.h>
#import "NSValue+CppObject.h"
// Argument counting algorithm. Not too complex
#define __NARG(_1, _2, _3, _4, _5, VAL, ...) VAL
#define NARG(...) __NARG(__VA_ARGS__, 5, 4, 3, 2, 1, 0)
// Different implementations based on number of parameters passed in
#define __OBJC_IVAR(N, ...) _OBJC_IVAR_ ## N (__VA_ARGS__)
#define _OBJC_IVAR(N, ...) __OBJC_IVAR(N, __VA_ARGS__)
// Usage: OBJC_IVAR(Type (optional), Name (required), Default (optional))
#define OBJC_IVAR(...) _OBJC_IVAR(NARG(__VA_ARGS__), __VA_ARGS__)
// create a unique name. we use '__COUNTER__' here to support scoping on the same line, for compressed source code
#define __OBJC_IVAR_STRINGIFY_NAME(file, line, name, counter) #file ":" #line " " #name ":" #counter
#define _OBJC_IVAR_NAME(file, line, name, counter) __OBJC_IVAR_STRINGIFY_NAME(file, line, name, counter)
#define OBJC_IVAR_NAME(name) _OBJC_IVAR_NAME(__FILE__, __LINE__, name, __COUNTER__)
// old style creation. advantage: uses __func__ to determine calling function
// #define OBJC_IVAR_NAME(Name) [NSString stringWithFormat:#"%s:%i %s:%s:%i", __FILE__, __LINE__, __func__, #Name, __COUNTER__]
// implemenations for each of the overloads
#define _OBJC_IVAR_0(...) _Pragma("message \"Cannot call OBJC_IVAR with 0 params!\"")
#define _OBJC_IVAR_1(Name) _OBJC_IVAR_2(__strong id, Name)
// first major implemenation. because we do no assignment here, we don't have to check for is_set
#define _OBJC_IVAR_2(Type, Name) Type& Name = (_OBJC_IVAR::IMPL<Type>(self, OBJC_IVAR_NAME(Name)))
// this is where things get fun. we have 'OBJC_IVAR_CUR_NAME', instead of calling OBJC_IVAR_NAME
// multiple times, because we must ensure that COUNTER does not change during the course of the macro
// this is the 'inner bowels' of C, and it's quite hacky. Returns a reference to an associated object
// which is wrapped in a NSValue. Note that we only evaluate 'default' once throught the course of the
// application's cycle, so you can feel free to put intensive loading code there.
static NSString *_OBJC_IVAR_CUR_NAME;
#define _OBJC_IVAR_3(Type, Name, Default) Type& Name = (_OBJC_IVAR::IS_SET(self, (_OBJC_IVAR_CUR_NAME = OBJC_IVAR_NAME(Name))) ? _OBJC_IVAR::IMPL<Type>(self, _OBJC_IVAR_CUR_NAME) : _OBJC_IVAR::IMPL<Type>(self, _OBJC_IVAR_CUR_NAME, Default))
// namespace to wrap al lof our functions
namespace _OBJC_IVAR
{
// internal dictionary of all associated object names, so that we don't run
// into memory management issues. we use a set here, because we should never
// have duplicate associated object names.
static NSMutableSet *_names = [NSMutableSet set];
// wraps a value and a reference to a value. used over std::reference_wrapper,
// as that doesn't actually copy in the value passed. That is required for what
// we are doing, as we cannot be assigning to constants.
template<typename T>
class Wrapper {
private:
// private value wrapped by this object.
T _value;
// private reference wrapped by this object. should always point to _value.
T& _ref;
public:
// default constructor. assumes 'T' has a valid 0-argument constructor
Wrapper() : _value(), _ref(_value) { }
// argument constructor. makes sure that value is initialized properly
Wrapper(T val) : _value(val), _ref(_value) { }
// returns the reference wrapped by this object
operator T& () {
return _ref;
}
T& get() {
return _ref;
}
};
// interns a name. because objc_getAssociatedObject works only by comparing
// pointers (and +stringWithFormat: isn't guaranteed to return the same pointer),
// we have to make sure that we maintain a list of all valid associated object
// names. these are NOT linked to specific objects, which allows us to reuse some
// memory
inline NSString *name_intern(NSString *name)
{
// intern the value. first check if the object has been interned already,
// and if it is, return that interned value
if (id tmpName = [_names member:name])
{
name = tmpName;
}
// if we haven't interned this value before, then add it to the list and return it.
else
{
[_names addObject:name];
}
return name;
}
// check and see if the requested iVar has been set yet. used for default value setting
BOOL IS_SET(id target, NSString *name)
{
// first intern the name
name = name_intern(name);
// check if the object has this property. objc_getAssociatedObject will ALWAYS
// return NULL if the object doesn't exist. Note the bridged cast. This is because
// objc_getAssociatedObject doesn't care what you throw into the second parameter,
// as long as it is a pointer. That gives us the flexibility at a later date, to,
// for example, just pass a pointer to a single byte, and pull out the value that
// way. However, we pass in a NSString pointer, because it makes it easy for us to
// use and to re-use later.
id val = objc_getAssociatedObject(target, (__bridge const void *) name);
return val != nil;
}
// the actual implementation for setting the iVar. luckily this code isn't too hacky,
// but it is a bit confusing.
template<typename T>
Wrapper<T>& IMPL(id target, NSString *name)
{
// first intern the name
name = name_intern(name);
// define a reference. we use pointers & new here, because C++ memory managment is
// weird at best. Most of the time, you should be using RAII, but when dealing with
// templates & objective-c interpolation, it is almost required that you use pointers
// with new.
Wrapper<T> *reference = nullptr;
// check and see if the object already contains this property, if so, return that value
NSValue *result = objc_getAssociatedObject(target, (__bridge const void *) name);
if (result == nil)
{
// at this point, we need to create a new iVar, with the default constructor for the type.
// for objective-c objects this is 'nil', for integers and floating point values this is 0,
// for C++ structs and classes, this calls the default constructor. If one doesn't exist,
// you WILL get a compile error.
reference = new Wrapper<T>();
// we now set up the object that will hold this wrapper. This is an extension on NSValue
// which allows us to store a generic pointer (in this case a C++ object), and run desired
// code on -dealloc (which will be called at the time the parent object is destroyed), in
// this case, free the memory used by our wrapper.
result = [NSValue valueWithCppObject:reference onDealloc:^(void *) {
delete reference;
}];
// finally, set the associated object to the target, and now we are good to go.
// We use OBJC_ASSOCIATION_RETAIN, so that our NSValue is properly freed when done.
objc_setAssociatedObject(target, (__bridge const void *) name, result, OBJC_ASSOCIATION_RETAIN);
}
// from result, we cast it's -cppObjectValue to a Wrapper, to pull out the value.
reference = static_cast<Wrapper<T> *>([result cppObjectValue]);
// finally, return the pointer as a reference, not a pointer
return *reference;
}
// this is pretty much the same as the other IMPL, but it has specific code for default values.
// I will ignore everything that is the same about the two functions, and only focus on the
// differences, which are few, but mandatory.
template<typename T>
Wrapper<T>& IMPL(id target, NSString *name, const T& defVal)
{
name = name_intern(name);
Wrapper<T> *reference = nullptr; // asign to be the default constructor for 'T'
NSValue *result = objc_getAssociatedObject(target, (__bridge const void *) name);
if (result == nil)
{
// this is the only difference. Instead of constructing with the default constructor,
// simply pass in our new default value as a copy.
reference = new Wrapper<T>(defVal);
result = [NSValue valueWithCppObject:reference onDealloc:^(void *) {
delete reference;
}];
objc_setAssociatedObject(target, (__bridge const void *) name, result, OBJC_ASSOCIATION_RETAIN);
}
reference = static_cast<Wrapper<T> *>([result cppObjectValue]);
return *reference;
}
}
#endif // OBJC_IVAR_HPP
NSValue+CppObject.h
//
// NSValue+CppObject.h
// TestProj
//
// Created by Richard Ross on 8/17/12.
// Copyright (c) 2012 Ultimate Computer Services, Inc. All rights reserved.
//
#import <Foundation/Foundation.h>
// Extension on NSValue to add C++ object support. Because of the difficulty
// involved in templates, I took the easy way out and simply passed in a block
// of code to be run at dealloc.
#interface NSValue (CppObject)
// create a new NSValue instance that holds ptr, and calls 'deallocBlock' on destruction.
+(id) valueWithCppObject:(void *) ptr onDealloc:(void (^)(void *)) deallocBlock;
-(id) initWithCppObject:(void *) ptr onDealloc:(void (^)(void *)) deallocBlock;
// get the held pointer of this object. I called it -cppObjectValue, so
// there was no confusion with -pointerValue.
-(void *) cppObjectValue;
#end
NSValue+CppObject.m
//
// NSValue+CppObject.m
// TestProj
//
// Created by Richard Ross on 8/17/12.
// Copyright (c) 2012 Ultimate Computer Services, Inc. All rights reserved.
//
#import "NSValue+CppObject.h"
// the concrete NSValue subclass for supporting C++ objects. Pretty straight-forward interface.
#interface ConcreteCppObject : NSValue
{
// the underlying object that is being pointed to
void *_object;
// the block that is called on -dealloc
void (^_deallocBlock)(void *);
}
#end
#implementation ConcreteCppObject
// object initialization
+(id) valueWithCppObject:(void *)ptr onDealloc:(void (^)(void *))deallocBlock
{
return [[self alloc] initWithCppObject:ptr onDealloc:deallocBlock];
}
-(id) initWithCppObject:(void *)ptr onDealloc:(void (^)(void *))deallocBlock
{
if (self = [super init])
{
_object = ptr;
_deallocBlock = deallocBlock;
}
return self;
}
// required methods for subclassing NSValue
-(const char *) objCType
{
return #encode(void *);
}
-(void) getValue:(void *)value
{
*((void **) value) = _object;
}
// comparison
-(BOOL) isEqual:(id)compare
{
if (![compare isKindOfClass:[self class]])
return NO;
return [compare cppObjectValue] == [self cppObjectValue];
}
// cleanup
-(void) dealloc
{
// this should manage cleanup for us
_deallocBlock(_object);
}
// value access
-(void *) cppObjectValue
{
return _object;
}
#end
// NSValue additions for creating the concrete instances
#implementation NSValue (CppObject)
// object initialization
+(id) valueWithCppObject:(void *)ptr onDealloc:(void (^)(void *))deallocBlock
{
return [[ConcreteCppObject alloc] initWithCppObject:ptr onDealloc:deallocBlock];
}
-(id) initWithCppObject:(void *)ptr onDealloc:(void (^)(void *))deallocBlock
{
return [[self class] valueWithCppObject:ptr onDealloc:deallocBlock];
}
// unless the NSValue IS a ConcreteCppObject, then we shouldn't do anything here
-(void *) cppObjectValue
{
[self doesNotRecognizeSelector:_cmd];
return nil;
}
#end
Example Usage:
#import "OBJC_IVAR.hpp"
#interface SomeObject : NSObject
-(void) doSomething;
#end
#implementation SomeObject
-(void) doSomething
{
OBJC_IVAR(__strong id, test, #"Hello World!");
OBJC_IVAR(int, test2, 15);
NSLog(#"%#", test);
NSLog(#"%i", test2 += 7);
// new scope
{
OBJC_IVAR(int, test, 100);
NSLog(#"%i", ++test);
}
[self somethingElse];
}
-(void) somethingElse
{
OBJC_IVAR(int, newVar, 7);
NSLog(#"%i", newVar++);
}
#end
int main()
{
SomeObject *obj = [SomeObject new];
[obj doSomething];
[obj doSomething];
[obj doSomething];
}
I had a class, which was not a singleton, that needed a variable
shared between method calls, like static, but each instance needed
it's own variable.
In that case, the variable is part of the object's state, and it's therefore most appropriate to use an instance variable (or a property). This is exactly what ivars are for, whether they're used in a dozen methods or just one.
I am currently working on an Objective-C++ implementation myself, I
was just wondering if anyone else had any thoughts (or existing tools)
on how to do this.
My advice is to not do it at all. If your goal is to avoid clutter, don't go needlessly trying to add a new storage class to the language.
However, if you're determined to pursue this line, I'd look at using blocks instead of associated objects. Blocks get their own copies of variables that are scoped to the lifetime of the block. For example, you can do this:
- (void)func
{
__block int i = 0;
void (^foo)() = ^{
i++;
NSLog(#"i = %d", i);
};
foo();
foo();
foo();
}
and the output you get is:
i = 1
i = 2
i = 3
Perhaps you can find a clever way to wrap that up in a macro, but it looks to me like a lot of trouble just to avoid declaring an instance variable.

Managing list of error codes for NSError in objective c

In Cocoa and Objective C the favorite method for managing error seems to be using an NSError * object, to construct an error object however, we need to call the following method
+ (id)errorWithDomain:(NSString *)domain code:(NSInteger)code userInfo:(NSDictionary *)dict
My question is, what are some of the best practices for managing error domain, error code definitions and user info dictionary across the entire application so that error code, domain and user info dict always stays consistent?
If you have a hefty amount of error construction, your life could be much simpler by using a class. I actually use C++ for this so the calls a program does not need may be removed (unlike objc), but you can use C, ObjC, or C++ for this:
MONErrorDomain.h
// you won't normally need an instance here
#interface MONErrorDomain : NSObject
+ (NSString *)domain; // << required override
- (NSString *)domain; // << returns [[self class] domain]
// example convenience methods:
// uses [self domain]
+ (NSError *)errorWithErrorCode:(NSInteger)errorCode; // << user info would be nil
+ (NSError *)errorWithErrorCode:(NSInteger)errorCode userInfo:(NSDictionary *)userInfo;
#end
MONKoalaError.h
#interface MONKoalaError : MONErrorDomain
+ (NSError *)outOfEucalyptus;
#end
extern NSString * const MONKoalaErrorDomain;
typedef enum MONKoalaErrorCode {
MONKoalaErrorCode_Undefined = 0,
MONKoalaErrorCode_OutOfEucalyptus
} MONKoalaErrorCode;
MONKoalaError.m
// apple recommends we use reverse domains
NSString * const MONKoalaErrorDomain = #"com.mon.koala-library.MONKoalaErrorDomain";
#implementation MONKoalaError
+ (NSString *)domain
{
return MONKoalaErrorDomain;
}
+ (NSError *)outOfEucalyptus
{
NSDictionary * info = …;
return [self errorWithErrorCode:MONKoalaErrorCode_OutOfEucalyptus userInfo:info];
}
#end
Then the error creation is all in one place for each domain, and the clients can easily pick their errors without actually building them manually:
if (outError) {
*outError = [MONKoalaError outOfEucalyptus];
}
and error handling takes the form:
if ([e.domain isEqualToString:MONKoalaErrorDomain]) {
switch (e.code) {
case MONKoalaErrorCode_OutOfEucalyptus : {
self.needsEucalyptus = true;
…
One common way is to define some appropriate constants in a header file, and then include that header file wherever needed. It's a pretty simple approach, and looks like:
const NSString * kMyAppErrorDomain = #"com.example.myapp";
const NSInteger kMyAppSomeError = 2;
// key into user info dictionary
const NSString * kMyAppProblemKey = #"MyAppProblemKey";
I've also seen some applications which create convenience methods for creating these, either as a category on NSError or as a separate utility class or set of functions. It's also entirely reasonable to subclass NSError, for example to customize the localized description.
If you have not already seen it, Apple has released the Error Handling Programming Guide which discusses how these should be used in Cocoa.

Objective-C & KeyValueCoding: How to avoid an exception with valueForKeyPath:?

I've got an object of type id and would like to know if it contains a value for a given keyPath:
[myObject valueForKeyPath:myKeyPath];
Now, I wrap it into a #try{ } #catch{} block to avoid exceptions when the given keypath isn't found. Is there a nicer way to do this? Check if the given keypath exists without handling exceptions?
Thanks a lot,
Stefan
You could try this:
if ([myObject respondsToSelector:NSSelectorFromString(myKeyPath)])
{
}
However, that may not correspond to the getter you have, especially if it is a boolean value. If this doesn't work for you, let me know and I'll write you up something using reflection.
For NSManagedObjects, an easy solution is to look at the object's entity description and see if there's an attribute with that key name. If there is, you can also take it to the next step and see what type of an attribute the value is.
Here's a simple method that given any NSManagedObject and any NSString as a key, will always return an NSString:
- (NSString *)valueOfItem:(NSManagedObject *)item asStringForKey:(NSString *)key {
NSEntityDescription *entity = [item entity];
NSDictionary *attributesByName = [entity attributesByName];
NSAttributeDescription *attribute = attributesByName[key];
if (!attribute) {
return #"---No Such Attribute Key---";
}
else if ([attribute attributeType] == NSUndefinedAttributeType) {
return #"---Undefined Attribute Type---";
}
else if ([attribute attributeType] == NSStringAttributeType) {
// return NSStrings as they are
return [item valueForKey:key];
}
else if ([attribute attributeType] < NSDateAttributeType) {
// this will be all of the NSNumber types
// return them as strings
return [[item valueForKey:key] stringValue];
}
// add more "else if" cases as desired for other types
else {
return #"---Unacceptable Attribute Type---";
}
}
If the key is invalid or the value can't be made into a string, the method returns an NSString error message (change those blocks to do whatever you want for those cases).
All of the NSNumber attribute types are returned as their stringValue representations. To handle other attribute types (e.g.: dates), simply add additional "else if" blocks. (see NSAttributeDescription Class Reference for more information).
If the object is a custom class of yours, you could override valueForUndefinedKey: on your object, to define what is returned when a keypath doesn't exist.
It should be possible to graft this behavior onto arbitrary classes reasonably simply. I present with confidence, but without warranty, the following code which you should be able to use to add a non-exception-throwing implementation of valueForUndefinedKey: to any class, with one, centralized line of code per class at app startup time. If you wanted to save even more code, you could make all the classes you wanted to have this behavior inherit from a common subclass of NSManagedObject and then apply this to that common class and all your subclasses would inherit the behavior. More details after, but here's the code:
Header (NSObject+ValueForUndefinedKeyAdding.h):
#interface NSObject (ValueForUndefinedKeyAdding)
+ (void)addCustomValueForUndefinedKeyImplementation: (IMP)handler;
#end
Implementation (NSObject+ValueForUndefinedKeyAdding.m):
#import "NSObject+ValueForUndefinedKeyAdding.h"
#import <objc/runtime.h>
#import <objc/message.h>
#implementation NSObject (ValueForUndefinedKeyAdding)
+ (void)addCustomValueForUndefinedKeyImplementation: (IMP)handler
{
Class clazz = self;
if (clazz == nil)
return;
if (clazz == [NSObject class] || clazz == [NSManagedObject class])
{
NSLog(#"Don't try to do this to %#; Really.", NSStringFromClass(clazz));
return;
}
SEL vfuk = #selector(valueForUndefinedKey:);
#synchronized([NSObject class])
{
Method nsoMethod = class_getInstanceMethod([NSObject class], vfuk);
Method nsmoMethod = class_getInstanceMethod([NSManagedObject class], vfuk);
Method origMethod = class_getInstanceMethod(clazz, vfuk);
if (origMethod != nsoMethod && origMethod != nsmoMethod)
{
NSLog(#"%# already has a custom %# implementation. Replacing that would likely break stuff.",
NSStringFromClass(clazz), NSStringFromSelector(vfuk));
return;
}
if(!class_addMethod(clazz, vfuk, handler, method_getTypeEncoding(nsoMethod)))
{
NSLog(#"Could not add valueForUndefinedKey: method to class: %#", NSStringFromClass(clazz));
}
}
}
#end
Then, in your AppDelegate class (or really anywhere, but it probably makes sense to put it somewhere central, so you know where to find it when you want to add or remove classes from the list) put this code which adds this functionality to classes of your choosing at startup time:
#import "MyAppDelegate.h"
#import "NSObject+ValueForUndefinedKeyAdding.h"
#import "MyOtherClass1.h"
#import "MyOtherClass2.h"
#import "MyOtherClass3.h"
static id ExceptionlessVFUKIMP(id self, SEL cmd, NSString* inKey)
{
NSLog(#"Not throwing an exception for undefined key: %# on instance of %#", inKey, [self class]);
return nil;
}
#implementation MyAppDelegate
+ (void)initialize
{
static dispatch_once_t onceToken;
dispatch_once(&onceToken, ^{
[MyOtherClass1 addCustomValueForUndefinedKeyImplementation: (IMP)ExceptionlessVFUKIMP];
[MyOtherClass2 addCustomValueForUndefinedKeyImplementation: (IMP)ExceptionlessVFUKIMP];
[MyOtherClass3 addCustomValueForUndefinedKeyImplementation: (IMP)ExceptionlessVFUKIMP];
});
}
// ... rest of app delegate class ...
#end
What I'm doing here is adding a custom implementation for valueForUndefinedKey: to the classes MyOtherClass1, 2 & 3. The example implementation I've provided just NSLogs and returns nil, but you can change the implementation to do whatever you want, by changing the code in ExceptionlessVFUKIMP. If you remove the NSLog, and just return nil, I suspect you'll get what you want, based on your question.
This code NEVER swizzles methods, it only adds one if it's not there. I've put in checks to prevent this from being used on classes that already have their own custom implementations of valueForUndefinedKey: because if someone put that method in their class, there's going to be an expectation that it will continue to get called. Also note that there may be AppKit code that EXPECTS the exceptions from the NSObject/NSManagedObject implementations to be thrown. (I don't know that for sure, but it's a possibility to consider.)
A few notes:
NSManagedObject provides a custom implementation for valueForUndefinedKey: Stepping through its assembly in the debugger, all it appears to do is throw roughly the same exception with a slightly different message. Based on that 5 minute debugger investigation, I feel like it ought to be safe to use this with NSManagedObject subclasses, but I'm not 100% sure -- there could be some behavior in there that I didn't catch. Beware.
Also, as it stands, if you use this approach, you don't have a good way to know if valueForKey: is returning nil because the keyPath is valid and the state happened to be nil, or if it's returning nil because the keyPath is invalid and the grafted-on handler returned nil. To do that, you'd need to do something different, and implementation specific. (Perhaps return [NSNull null] or some other sentinel value, or set some flag in thread-local storage that you could check, but at this point is it really all that much easier than #try/#catch?) Just something to be aware of.
This appears to work pretty well for me; Hope it's useful to you.
There's no easy way to solve this. Key Value Coding (KVC) isn't intended to be used that way.
One thing is for sure: using #try-#catch is really bad since you're very likely to leak memory etc. Exceptions in ObjC / iOS are not intended for normal program flow. They're also very expensive (both throwing and setting up the #try-#catch IIRC).
If you look at the Foundation/NSKeyValueCoding.h header, the comment / documentation for
- (id)valueForKey:(NSString *)key;
clearly states which methods need to be implemented for -valueForKey: to work. This may even use direct ivar access. You would have to check each one in the order described there. You need to take the key path, split it up based on . and check each part on each subsequent object. To access ivars, you need to use the ObjC runtime. Look at objc/runtime.h.
All of this is vary hacky, though. What you probably want is for your objects to implement some formal protocol and then check -conformsToProtocol: before calling.
Are your key paths random strings or are those strings under your control? What are you trying to achieve? Are you solving the wrong problem?
I don't believe this is possible in a safe way (i.e. without mucking with -valueForUndefinedKey: or something similar on other peoples' classes). I say that because on the Mac side of things, Cocoa Bindings—which can be set to substitute a default value for invalid key paths—simply catches the exceptions that result from bad key paths. If even Apple's engineers don't have a way to test if a key path is valid without trying it and catching the exception, I have to assume that such a way doesn't exist.

Count the number of times a method is called in Cocoa-Touch?

I have a small app that uses cocos2d to run through four "levels" of a game in which each level is exactly the same thing. After the fourth level is run, I want to display an end game scene. The only way I have been able to handle this is by making four methods, one for each level. Gross.
I have run into this situation several times using both cocos2d and only the basic Cocoa framework. So is it possible for me to count how many times a method is called?
Can you just increment an instance variable integer every time your method is called?
I couldn't format the code in a comment, so to expound more:
In your header file, add an integer as a instance variable:
#interface MyObject : NSObject {
UIInteger myCounter;
}
And then in your method, increment it:
#implementation MyObject
- (void)myMethod {
myCounter++;
//Do other method stuff here
if (myCounter>3){
[self showEndGameScene];
}
}
#end
I don't know if your way is the best way to do it, or if mine is, but like Nathaniel said, you would simply define an integer to hold the count in your #interface:
#interface MyClass : NSObject {
int callCount;
}
Then the method can increment this by doing:
- (void) theLevelMethod {
callCount++;
// some code
}
Make sure you initialize the callCount variable to 0 though, in your constructor or the equivalent of viewDidLoad. Then in the code that checks the count you can check:
if (callCount == 4) {
// do something, I guess end scene
}
Then again, I guess you can simply do something like this:
for (int i = 0; i < 4; i++) {
[self theLevelMethod];
}
[self theEndScene];
I don't know how your game logic works, but I guess that would work.
Sorry if I misunderstood your question.