I have tensor (None, 196) and after reshaping, it becomes (None, 14, 14).
And now, I want to copy it to channel axis, so that the shape should be (None, 14, 14, 512). Lastly, I want to copy to timestep axis, so it becomes (None, 10, 14, 14, 512). I accomplish those steps using this snippet code:
def replicate(tensor, input_target):
batch_size = K.shape(tensor)[0]
nf, h, w, c = input_target
x = K.reshape(tensor, [batch_size, 1, h, w, 1])
# Replicate to channel dimension
x = K.tile(x, [batch_size, 1, 1, 1, c])
# Replicate to timesteps dimension
x = K.tile(x, [batch_size, nf, 1, 1, 1])
return x
x = ...
x = Lambda(replicate, arguments={'input_target':input_shape})(x)
another_x = Input(shape=input_shape) # shape (10, 14, 14, 512)
x = layers.multiply([x, another_x])
x = ...
I plot the model and the output shape is just like I want it to be. But, the problem arises in model training. I set the batch size to 2. This the the error message:
tensorflow.python.framework.errors_impl.InvalidArgumentError: Incompatible shapes: [8,10,14,14,512] vs. [2,10,14,14,512]
[[{{node multiply_1/mul}} = Mul[T=DT_FLOAT, _class=["loc:#training/Adam/gradients/multiply_1/mul_grad/Sum"], _device="/job:localhost/replica:0/task:0/device:GPU:0"](Lambda_2/Tile_1, _arg_another_x_0_0/_189)]]
[[{{node metrics/top_k_categorical_accuracy/Mean_1/_265}} = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_6346_metrics/top_k_categorical_accuracy/Mean_1", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]]
Looks like, K.tile() increases the batch size from 2 to 8. When I set the batch size to 10, it becomes 1000.
So, my question is how to achieve the result as I want? Is it good way to use tile()? Or, should I use repeat_elements()? Thanks!
I am using Tensorflow 1.12.0 and Keras 2.2.4.
As a rule of thumb, try to avoid bringing batch size to the transformations happening in the Lambda layer.
When you use tile operation, you only set only the dimension that needs to change (for example you had batch_size value in your tile operation which is wrong). Also I am using tf.tile instead of K.tile (TF 1.12 doesn't have tile in the Keras backend it seems).
def replicate(tensor, input_target):
_, nf, h, w, c = input_target
x = K.reshape(tensor, [-1, 1, h, w, 1])
# Replicate to channel dimension
# You can combine below lines to tf.tile(x, [1, nf, 1, 1, c]) as well
x = tf.tile(x, [1, 1, 1, 1, c])
# Replicate to timesteps dimension
x = tf.tile(x, [1, nf, 1, 1, 1])
return x
Simple example
input_shape= [None, 10, 14, 14, 512]
x = Input(shape=(196,))
x = Lambda(replicate, arguments={'input_target':input_shape})(x)
print(x.shape)
Which gives
>>> (?, 10, 14, 14, 512)
Related
Say I have tensors
a
Out[15]: <tf.Tensor 'Placeholder_2:0' shape=(?, 1152, 8) dtype=float32>
b
Out[16]: <tf.Variable 'Variable:0' shape=(16, 8, 1152, 10) dtype=float32_ref>
a represents a batch of 1152 8-dimensional vectors and
b is 1152*10, (16, 8) matrices.
I wish to multiply those matrices with the 8-dimensional vectors in a and get a tensor of shape (None, 16, 1152, 10) back. I know in tensorflow one can use einsum to get this job done
tf.einsum('ijkl,bkj->bikl', b, a)
gives me the correct output and the shape. But tf.einsum is very slow compare to similar functions like K.batch_dot or tf.tensordot. However, I struggled to understand how these functions handle axes and broadcasting rules. Any help?
By using transpose and reshape you can achieve the same:
a : [batch, 1152, 8] --> reshape --> [batch, 1, 1, 1152, 8]
b : [16,8,1152,10] --> transpose --> [16, 10, 1152, 8]
--> expand_dims --> [1, 16, 10, 1152, 8]
multiply (a, b) --> [batch, 16, 10, 1152, 8]
reduce_sum axis 4 --> [batch, 16, 10, 1152]
Code:
#inputs
import numpy.testing as npt
x = np.random.normal(size=(5,1152,8))
y = np.random.normal(size=(16, 8, 1152, 10))
a = tf.placeholder(tf.float32,shape=(None, 1152, 8))
b = tf.constant(y, tf.float32)
out = tf.reduce_sum(tf.expand_dims(tf.transpose(b,[0, 3, 2, 1]),0)
* tf.reshape(a,[-1,1,1,tf.shape(a)[1], tf.shape(a)[2]]), axis=4)
out = tf.transpose(out, [0,1,3,2])
out_ein = tf.einsum('ijkl,bkj->bikl', b, a)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
o = sess.run(out, {a: x})
e = sess.run(out_ein, {a: x})
npt.assert_almost_equal(o, e, decimal=5)
#almost the same
I was trying to implement various GANs in Tensorflow (after doing it successfully in PyTorch), and I am having some problems while coding the discriminator part.
The code of the discriminator (very similar to the MNIST CNN tutorial) is:
def discriminator(x):
"""Compute discriminator score for a batch of input images.
Inputs:
- x: TensorFlow Tensor of flattened input images, shape [batch_size, 784]
Returns:
TensorFlow Tensor with shape [batch_size, 1], containing the score
for an image being real for each input image.
"""
with tf.variable_scope("discriminator"):
x = tf.reshape(x, [tf.shape(x)[0], 28, 28, 1])
h_1 = leaky_relu(tf.layers.conv2d(x, 32, 5))
m_1 = tf.layers.max_pooling2d(h_1, 2, 2)
h_2 = leaky_relu(tf.layers.conv2d(m_1, 64, 5))
m_2 = tf.layers.max_pooling2d(h_2, 2, 2)
m_2 = tf.contrib.layers.flatten(m_2)
h_3 = leaky_relu(tf.layers.dense(m_2, 4*4*64))
logits = tf.layers.dense(h_3, 1)
return logits
while the code for the generator (architecture of InfoGAN paper) is:
def generator(z):
"""Generate images from a random noise vector.
Inputs:
- z: TensorFlow Tensor of random noise with shape [batch_size, noise_dim]
Returns:
TensorFlow Tensor of generated images, with shape [batch_size, 784].
"""
with tf.variable_scope("generator"):
batch_size = tf.shape(z)[0]
fc = tf.nn.relu(tf.layers.dense(z, 1024))
bn_1 = tf.layers.batch_normalization(fc)
fc_2 = tf.nn.relu(tf.layers.dense(bn_1, 7*7*128))
bn_2 = tf.layers.batch_normalization(fc_2)
bn_2 = tf.reshape(bn_2, [batch_size, 7, 7, 128])
c_1 = tf.nn.relu(tf.contrib.layers.convolution2d_transpose(bn_2, 64, 4, 2, padding='valid'))
bn_3 = tf.layers.batch_normalization(c_1)
c_2 = tf.tanh(tf.contrib.layers.convolution2d_transpose(bn_3, 1, 4, 2, padding='valid'))
So far, so good. The number of parameters is correct (checked it). However, I am having some problems in the next block of code:
tf.reset_default_graph()
# number of images for each batch
batch_size = 128
# our noise dimension
noise_dim = 96
# placeholder for images from the training dataset
x = tf.placeholder(tf.float32, [None, 784])
# random noise fed into our generator
z = sample_noise(batch_size, noise_dim)
# generated images
G_sample = generator(z)
with tf.variable_scope("") as scope:
#scale images to be -1 to 1
logits_real = discriminator(preprocess_img(x))
# Re-use discriminator weights on new inputs
scope.reuse_variables()
logits_fake = discriminator(G_sample)
# Get the list of variables for the discriminator and generator
D_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'discriminator')
G_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'generator')
# get our solver
D_solver, G_solver = get_solvers()
# get our loss
D_loss, G_loss = gan_loss(logits_real, logits_fake)
# setup training steps
D_train_step = D_solver.minimize(D_loss, var_list=D_vars)
G_train_step = G_solver.minimize(G_loss, var_list=G_vars)
D_extra_step = tf.get_collection(tf.GraphKeys.UPDATE_OPS, 'discriminator')
G_extra_step = tf.get_collection(tf.GraphKeys.UPDATE_OPS, 'generator')
The problem I am getting is where I am doing the reshape in the discriminator, and the error says:
ValueError: None values not supported.
Sure, the value for the batch_size is None (btw, the same error I am getting even where I am changing it to some number), but shape function (as far as I understand) should get the dynamic shape, not the static one. I think that I am a bit lost here.
For what is worth, I am giving here the link to the entire notebook I am working: https://github.com/TheRevanchist/GANs/blob/master/GANs-TensorFlow.ipynb if someone wants to look at it.
NB: The code here is part of the Stanford CS231n assignment. I have no affiliation with Stanford though, so it isn't homework cheating (proof: the course is finished months ago).
The generator seems to be the problem. The output size should match the discriminator. And the other issues are batch norm should be applied before the activation unit. I have modified the code:
with tf.variable_scope("generator"):
fc = tf.layers.dense(z, 4*4*128)
bn_1 = leaky_relu(tf.layers.batch_normalization(fc))
bn_1 = tf.reshape(bn_1, [-1, 4, 4, 128])
c_1 = tf.layers.conv2d_transpose(bn_1, 64, 5, strides=2, padding='same')
bn_2 = leaky_relu(tf.layers.batch_normalization(c_1))
c_2 = tf.layers.conv2d_transpose(bn_2, 32, 5, strides=2, padding='same')
bn_3 = leaky_relu(tf.layers.batch_normalization(c_2))
c_3 = tf.layers.conv2d_transpose(bn_3, 1, 5, strides=2, padding='same')
c_3 = tf.layers.batch_normalization(c_3)
c_3 = tf.image.resize_images(c_3, (28, 28))
c_3 = tf.contrib.layers.flatten(c_3)
c_3 = tf.tanh(c_3)
return c_3
Your code gives the below output when run with the above changes
Instead of passing None to reshape you must pass -1.
So this:
x = tf.reshape(x, [tf.shape(x)[0], 28, 28, 1])
becomes
x = tf.reshape(x, [-1, 28, 28, 1])
and this:
bn_2 = tf.reshape(bn_2, [batch_size, 7, 7, 128])
becomes:
bn_2 = tf.reshape(bn_2, [-1, 7, 7, 128])
It will infer the batch size from the rest of the shape you provided.
I am using the code below to create CNN layers.
conv1 = tf.layers.conv2d(inputs = input, filters = 20, kernel_size = [3,3],
padding = "same", activation = tf.nn.relu)
and I want to get the values of all kernels after training. It does not work it I simply do
kernels = conv1.kernel
So how should I retrieve the value of these kernels? I am also not sure what variables and method does conv2d has since tensorflow don't really tell it in conv2d class.
You can find all the variables in list returned by tf.global_variables() and easily lookup for variable you need.
If you wish to get these variables by name, declare a layer as:
conv_layer_1 = tf.layers.conv2d(activation=tf.nn.relu,
filters=10,
inputs=input_placeholder,
kernel_size=(3, 3),
name="conv1", # NOTE THE NAME
padding="same",
strides=(1, 1))
Recover the graph as:
gr = tf.get_default_graph()
Recover the kernel values as:
conv1_kernel_val = gr.get_tensor_by_name('conv1/kernel:0').eval()
Recover the bias values as:
conv1_bias_val = gr.get_tensor_by_name('conv1/bias:0').eval()
You mean you want to get the value of the weights for the conv1 layer.
You haven't actually defined the weights with conv2d, you need to do that. When I create a convolutional layer I use a function that performs all the necessary steps, here's a copy/paste of the function I use to create a each of my convolutional layers:
def _conv_layer(self, name, in_channels, filters, kernel, input_tensor, strides, dtype=tf.float32):
with tf.variable_scope(name):
w = tf.get_variable("w", shape=[kernel, kernel, in_channels, filters],
initializer=tf.contrib.layers.xavier_initializer_conv2d(), dtype=dtype)
b = tf.get_variable("b", shape=[filters], initializer=tf.constant_initializer(0.0), dtype=dtype)
c = tf.nn.conv2d(input_tensor, w, strides, padding='SAME', name=name + "c")
a = tf.nn.relu(c + b, name=name + "_a")
print name + "_a", a.get_shape().as_list(), name + "_w", w.get_shape().as_list(), \
"params", np.prod(w.get_shape().as_list()[1:]) + filters
return a, w.get_shape().as_list()
This is what I use to define 5 convolutional layers, this example is straight out of my code, so note that it's 5 convolutional layers stacked without using max pooling or anything, strides of 2 and 5x5 kernels.
conv1_a, _ = self._conv_layer("conv1", 3, 24, 5, self.imgs4d, [1, 2, 2, 1]) # 24.8 MiB/feature -> 540 x 960
conv2_a, _ = self._conv_layer("conv2", 24, 80, 5, conv1_a, [1, 2, 2, 1]) # 6.2 MiB -> 270 x 480
conv3_a, _ = self._conv_layer("conv3", 80, 256, 5, conv2_a, [1, 2, 2, 1]) # 1.5 MiB -> 135 x 240
conv4_a, _ = self._conv_layer("conv4", 256, 750, 5, conv3_a, [1, 2, 2, 1]) # 0.4 MiB -> 68 x 120
conv5_a, _ = self._conv_layer("conv5", 750, 2048, 5, conv4_a, [1, 2, 2, 1]) # 0.1 MiB -> 34 x 60
There's also a good tutorial on the tensorflow website on how to set up a convolutional network:
https://www.tensorflow.org/tutorials/deep_cnn
The direct answer to your question is that the weights for the convolutional layer are defined there as w, that's the tensor you're asking about if I understand you correctly.
I am learning the TensorFlow, building a multilayer_perceptron model. I am looking into some examples like the one at: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/multilayer_perceptron.ipynb
I then have some questions in the code below:
def multilayer_perceptron(x, weights, biases):
:
:
pred = multilayer_perceptron(x, weights, biases)
:
:
with tf.Session() as sess:
sess.run(init)
:
correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
print ("Accuracy:", accuracy.eval({x: X_test, y: y_test_onehot}))
I am wondering what do tf.argmax(prod,1) and tf.argmax(y,1) mean and return (type and value) exactly? And is correct_prediction a variable instead of real values?
Finally, how do we get the y_test_prediction array (the prediction result when the input data is X_test) from the tf session? Thanks a lot!
tf.argmax(input, axis=None, name=None, dimension=None)
Returns the index with the largest value across axis of a tensor.
input is a Tensor and axis describes which axis of the input Tensor to reduce across. For vectors, use axis = 0.
For your specific case let's use two arrays and demonstrate this
pred = np.array([[31, 23, 4, 24, 27, 34],
[18, 3, 25, 0, 6, 35],
[28, 14, 33, 22, 20, 8],
[13, 30, 21, 19, 7, 9],
[16, 1, 26, 32, 2, 29],
[17, 12, 5, 11, 10, 15]])
y = np.array([[31, 23, 4, 24, 27, 34],
[18, 3, 25, 0, 6, 35],
[28, 14, 33, 22, 20, 8],
[13, 30, 21, 19, 7, 9],
[16, 1, 26, 32, 2, 29],
[17, 12, 5, 11, 10, 15]])
Evaluating tf.argmax(pred, 1) gives a tensor whose evaluation will give array([5, 5, 2, 1, 3, 0])
Evaluating tf.argmax(y, 1) gives a tensor whose evaluation will give array([5, 5, 2, 1, 3, 0])
tf.equal(x, y, name=None) takes two tensors(x and y) as inputs and returns the truth value of (x == y) element-wise.
Following our example, tf.equal(tf.argmax(pred, 1),tf.argmax(y, 1)) returns a tensor whose evaluation will givearray(1,1,1,1,1,1).
correct_prediction is a tensor whose evaluation will give a 1-D array of 0's and 1's
y_test_prediction can be obtained by executing pred = tf.argmax(logits, 1)
The documentation for tf.argmax and tf.equal can be accessed by following the links below.
tf.argmax() https://www.tensorflow.org/api_docs/python/math_ops/sequence_comparison_and_indexing#argmax
tf.equal() https://www.tensorflow.org/versions/master/api_docs/python/control_flow_ops/comparison_operators#equal
Reading the documentation:
tf.argmax
Returns the index with the largest value across axes of a tensor.
tf.equal
Returns the truth value of (x == y) element-wise.
tf.cast
Casts a tensor to a new type.
tf.reduce_mean
Computes the mean of elements across dimensions of a tensor.
Now you can easily explain what it does. Your y is one-hot encoded, so it has one 1 and all other are zero. Your pred represents probabilities of classes. So argmax finds the positions of best prediction and correct value. After that you check whether they are the same.
So now your correct_prediction is a vector of True/False values with the size equal to the number of instances you want to predict. You convert it to floats and take the average.
Actually this part is nicely explained in TF tutorial in the Evaluate the Model part
tf.argmax(input, axis=None, name=None, dimension=None)
Returns the index with the largest value across axis of a tensor.
For the case in specific, it receives pred as argument for it's input and 1 as axis. The axis describes which axis of the input Tensor to reduce across. For vectors, use axis = 0.
Example: Given the list [2.11,1.0021,3.99,4.32] argmax will return 3 which is the index of the highest value.
correct_prediction is a tensor that will be evaluated later. It is not a regular python variable. It contains the necessary information to compute the value later.
For this specific case, it will be part of another tensor accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) and will be evaluated by eval on accuracy.eval({x: X_test, y: y_test_onehot}).
y_test_prediction should be your correct_prediction tensor.
For those who do not have much time to understand tf.argmax:
x = np.array([[1, 9, 3],[4, 5, 6]])
tf.argmax(x, axis = 0)
output:
[array([1, 0, 1], dtype=int64)]
tf.argmax(x, axis = 1)
Output:
[array([1, 2], dtype=int64)]
source
I'm getting this error message when using conv2d_transpose:
W tensorflow/core/common_runtime/executor.cc:1102] 0x7fc81f0d6250 Compute status: Invalid argument: Conv2DBackpropInput: Number of rows of out_backprop doesn't match computed: actual = 32, computed = 4
[[Node: generator/g_h1/conv2d_transpose = Conv2DBackpropInput[T=DT_FLOAT, padding="SAME", strides=[1, 2, 2, 1], use_cudnn_on_gpu=true, _device="/job:localhost/replica:0/task:0/cpu:0"](generator/g_h1/conv2d_transpose/output_shape, generator/g_h1/w/read, _recv_l_0)]]
However, it occurs after the graph is built while compiling the loss function (Adam). Any ideas on what would cause this? I suspect it's related to the input dimensions but I'm not sure exactly why.
Full error: https://gist.github.com/jimfleming/75d88e888044615dd6e3
Relevant code:
# l shape: [batch_size, 32, 32, 4]
output_shape = [self.batch_size, 8, 8, 128]
filter_shape = [7, 7, 128, l.get_shape()[-1]]
strides = [1, 2, 2, 1]
with tf.variable_scope("g_h1"):
w = tf.get_variable('w', filter_shape, initializer=tf.random_normal_initializer(stddev=0.02))
h1 = tf.nn.conv2d_transpose(l, w, output_shape=output_shape, strides=strides, padding='SAME')
h1 = tf.nn.relu(h1)
output_shape = [self.batch_size, 16, 16, 128]
filter_shape = [7, 7, 128, h1.get_shape()[-1]]
strides = [1, 2, 2, 1]
with tf.variable_scope("g_h2"):
w = tf.get_variable('w', filter_shape, initializer=tf.random_normal_initializer(stddev=0.02))
h2 = tf.nn.conv2d_transpose(h1, w,output_shape=output_shape, strides=strides, padding='SAME')
h2 = tf.nn.relu(h2)
output_shape = [self.batch_size, 32, 32, 3]
filter_shape = [5, 5, 3, h2.get_shape()[-1]]
strides = [1, 2, 2, 1]
with tf.variable_scope("g_h3"):
w = tf.get_variable('w', filter_shape, initializer=tf.random_normal_initializer(stddev=0.02))
h3 = tf.nn.conv2d_transpose(h2, w,output_shape=output_shape, strides=strides, padding='SAME')
h3 = tf.nn.tanh(h3)
Thanks for the question! You're exactly right---the problem is that the input and output dimensions being passed to tf.nn.conv2d_transpose don't agree. (The error may be detected when computing gradients, but the gradient computation isn't the problem.)
Let's look at just the first part of your code, and simplify it a little bit:
sess = tf.Session()
batch_size = 3
output_shape = [batch_size, 8, 8, 128]
strides = [1, 2, 2, 1]
l = tf.constant(0.1, shape=[batch_size, 32, 32, 4])
w = tf.constant(0.1, shape=[7, 7, 128, 4])
h1 = tf.nn.conv2d_transpose(l, w, output_shape=output_shape, strides=strides, padding='SAME')
print sess.run(h1)
I replaced the variables with constants --- it's easier to see what's going on.
If you try to run this code, you get a similar error:
InvalidArgumentError: Conv2DCustomBackpropInput: Size of out_backprop doesn't match computed: actual = 32, computed = 4
[[Node: conv2d_transpose_6 = Conv2DBackpropInput[T=DT_FLOAT, data_format="NHWC", padding="SAME", strides=[1, 2, 2, 1], use_cudnn_on_gpu=true, _device="/job:localhost/replica:0/task:0/cpu:0"](conv2d_transpose_6/output_shape, Const_25, Const_24)]]
Now, the error is a little misleading --- it talks about the 'out_backprop' argument to 'Conv2DCustomBackpropInput'. The key is that tf.nn.conv2d_transpose is actually just the gradient of tf.nn.conv2d, so Tensorflow uses the same code internally (Conv2DCustomBackpropInput) to compute the gradient of tf.nn.conv2d and to compute tf.nn.conv2d_transpose.
The error means that the 'output_shape' you requested is not possible, given the shapes of 'l' and 'w'.
Since tf.nn.conv2d_transpose is the backward (gradient) counterpart of tf.nn.conv2d, one way to see what the correct shapes should be is to use the corresponding forward operation:
output = tf.constant(0.1, shape=output_shape)
expected_l = tf.nn.conv2d(output, w, strides=strides, padding='SAME')
print expected_l.get_shape()
# Prints (3, 4, 4, 4)
That is, in the forward direction, if you provided a tensor of shape 'output_shape', you would get out a tensor of shape (3, 4, 4, 4).
So one way to fix the problem is to change the shape of 'l' to (3, 4, 4, 4); if you change the code above to:
l = tf.constant(0.1, shape=[batch_size, 4, 4, 4])
everything works fine.
In general, try using tf.nn.conv2d to get a feel for what the relationship between the tensor shapes is. Since tf.nn.conv2d_transpose is its backward counterpart, it has the same relationship between input, output and filter shapes (but with the roles of the input and output reversed.)
Hope that helps!
Using padding='SAME' in tf.nn.conv2d_transpose() function may works too