Coalesce columns in pyspark dataframes - dataframe

res=to.join(tc, to.id1 == tc.id,how='left').select(to.id1.alias('Employee_id'), tc.name.alias('Employee_Name'), to.dept.alias('Employee_Dept'))
res.show()
+-----------+-------------+-------------+
|Employee_id|Employee_Name|Employee_Dept|
+-----------+-------------+-------------+
| 12| Prad| Physics|
| 13| null| Chem|
| 14| null| Maths|
+-----------+-------------+-------------+
I want to replace the null with say NONAME. Please advise the select syntax

Try something like this:
df.withColumn("EmployeeNameNoNull",coalesce(df.Employee_Name,lit('NONAME'))).show()

Related

SQL query to find an output table

I have three dimension tables and a fact table and i need to write a query in such way that i join all the dimension columns with fact table to find out top 10 ATMs where most transactions are in the ’inactive’ state.I try the query with cartesian join but i dont know if this is the right way to join the tables.
select a.atm_number,a.atm_manufacturer,b.location,count(c.trans_id) as total_transaction_count,count(c.atm_status) as inactive_count
from dimen_atm a,dimen_location b,fact_atm_trans c
where a.atm_id = c.atm_id and b.location = c.location
order by inactive_count desc limit 10;
dimen_card_type
+------------+---------+
|card_type_id|card_type|
+------------+---------+
| 1| CIRRUS|
| 2| Dankort|
dimen_atm
+------+----------+----------------+---------------+
|atm_id|atm_number|atm_manufacturer|atm_location_id|
+------+----------+----------------+---------------+
| 1| 1| NCR| 16|
| 2| 2| NCR| 64|
+------+----------+----------------+---------------+
dimen_location
+-----------+--------------------+----------------+-------------+-------+------+------+
|location_id| location| streetname|street_number|zipcode| lat| lon|
+-----------+--------------------+----------------+-------------+-------+------+------+
| 1|Intern København|Rådhuspladsen| 75| 1550|55.676|12.571|
| 2| København| Regnbuepladsen| 5| 1550|55.676|12.571|
+-----------+--------------------+----------------+-------------+-------+------+------+
fact_atm_trans
+--------+------+--------------+-------+------------+----------+--------+----------+------------------+------------+------------+-------+----------+----------+------------+-------------------+
|trans_id|atm_id|weather_loc_id|date_id|card_type_id|atm_status|currency| service|transaction_amount|message_code|message_text|rain_3h|clouds_all|weather_id|weather_main|weather_description|
+--------+------+--------------+-------+------------+----------+--------+----------+------------------+------------+------------+-------+----------+----------+------------+-------------------+
| 1| 1| 16| 5229| 3| Active| DKK|Withdrawal| 5980| null| null| 0.0| 80| 803| Clouds| broken cloudsr|
| 2| 1| 16| 4090| 10| Active| DKK|Withdrawal| 3992| null| null| 0.0| 32| 802| Clouds| scattered cloudsr|
+--------+------+--------------+-------+------------+----------+--------+----------+------------------+------------+-----------

Pyspark - how to drop records by primary keys?

I want to delete the records from an old_df if a new_df has a del flag for the key metric_id. What is the right way to achieve this?
old_df (flag here is filled with nulls on purpose)
+---------+--------+-------------+
|metric_id| flag | value|
+---------+--------+-------------+
| 10| null| value2|
| 10| null| value9|
| 12| null|updated_value|
| 15| null| test_value2|
+---------+--------+-------------+
new_df
+---------+--------+-------------+
|metric_id| flag | value|
+---------+--------+-------------+
| 10| del| value2|
| 12| pass|updated_value|
| 15| del| test_value2|
+---------+--------+-------------+
result_df
+---------+--------+-------------+
|metric_id| flag | value|
+---------+--------+-------------+
| 12| pass|updated_value|
+---------+--------+-------------+
One easy way to do this is to join then filter:
result_df = (
old_df.join(new_df, on='metric_id', how='left')
.where((new_df['flag'].isNull()) | (new_df['flag'] != lit('del')))
.select('metric_id', new_df['flag'], new_df['value'])
)
Which produces
+---------+----+-------------+
|metric_id|flag| value|
+---------+----+-------------+
| 12|pass|updated_value|
+---------+----+-------------+
I'm using a left join because there might be records in old_df for which the primary key is not present in new_df (and you don't want to delete those).

Joining tables and finding difference

I have a table which contains the following schema:
Table1
+------------------+--------------------+-------------------+-------------+-------------+
|student_id|project_id|name|project_name|approved|evaluation_type|grade| cohort_number|
I have another table with the following:
Table2
+-------------+----------+
|cohort_number|project_id|
My problem is: I want to get for each student_id the projects that he has not completed (no rows). The way i know all the projects he should have done is by checking the cohort_number. Basically I need the "diference" between the 2 tables. I want to fill table 1 with the missing entries, by comparing with table 2 project_id for that cohort_number.
I am not sure if I was clear.
I tried using LEFT JOIN, but I only get records where it matches. (I need the opposite)
Example:
Table1
|student_id|project_id|name| project_name| approved|evaluation_type| grade|cohort_number|
+----------+----------+--------------------+------+--------------------+--------+---------------+------------------
| 13| 18|Name| project/sd-03-bloc...| true| standard| 1.0| 3|
| 13| 7|Name| project/sd-03-bloc...| true| standard| 1.0| 3|
| 13| 27|Name| project/sd-03-bloc...| true| standard| 1.0| 3|
Table2
+-------------+----------+
|cohort_number|project_id|
+-------------+----------+
| 3| 18|
| 3| 27|
| 4| 15|
| 3| 7|
| 3| 35|
I want:
|student_id|project_id|name| project_name| approved|evaluation_type| grade|cohort_number|
+----------+----------+--------------------+------+--------------------+--------+---------------+------------------
| 13| 18|Name| project/sd-03-bloc...| true| standard| 1.0| 3|
| 13| 7|Name| project/sd-03-bloc...| true| standard| 1.0| 3|
| 13| 27|Name| project/sd-03-bloc...| true| standard| 1.0| 3|
| 13| 35|Name| project/sd-03-bloc...| false| standard| 0| 3|
Thanks in advance
If I followed you correctly, you can get all distinct (student_id, cohort_number, name) tuples from table1, and then bring all corresponding rows from table2. This basically gives you one row for each project that a student should have completed.
You can then bring table1 with a left join. "Missing" projects are identified by null values in columns project_name, approved, evaluation_type, grade.
select
s.student_id,
t2.project_id,
s.name,
t1.project_name,
t1.approved,
t1.evaluation_type,
t1.grade,
s.cohort_number
from (select distinct student_id, cohort_number, name from table1) s
inner join table2 t2
on t2.cohort_number = s.cohort_number
left join table1 t1
on t1.student_id = s.student_id
and t1.project_id = t.project_id

extracting numpy array from Pyspark Dataframe

I have a dataframe gi_man_df where group can be n:
+------------------+-----------------+--------+--------------+
| group | number|rand_int| rand_double|
+------------------+-----------------+--------+--------------+
| 'GI_MAN'| 7| 3| 124.2|
| 'GI_MAN'| 7| 10| 121.15|
| 'GI_MAN'| 7| 11| 129.0|
| 'GI_MAN'| 7| 12| 125.0|
| 'GI_MAN'| 7| 13| 125.0|
| 'GI_MAN'| 7| 21| 127.0|
| 'GI_MAN'| 7| 22| 126.0|
+------------------+-----------------+--------+--------------+
and I am expecting a numpy nd_array i.e, gi_man_array:
[[[124.2],[121.15],[129.0],[125.0],[125.0],[127.0],[126.0]]]
where rand_double values after applying pivot.
I tried the following 2 approaches:
FIRST: I pivot the gi_man_df as follows:
gi_man_pivot = gi_man_df.groupBy("number").pivot('rand_int').sum("rand_double")
and the output I got is:
Row(number=7, group=u'GI_MAN', 3=124.2, 10=121.15, 11=129.0, 12=125.0, 13=125.0, 21=127.0, 23=126.0)
but here the problem is to get the desired output, I can't convert it to matrix then convert again to numpy array.
SECOND:
I created the vector in the dataframe itself using:
assembler = VectorAssembler(inputCols=["rand_double"],outputCol="rand_double_vector")
gi_man_vector = assembler.transform(gi_man_df)
gi_man_vector.show(7)
and I got the following output:
+----------------+-----------------+--------+--------------+--------------+
| group| number|rand_int| rand_double| rand_dbl_Vect|
+----------------+-----------------+--------+--------------+--------------+
| GI_MAN| 7| 3| 124.2| [124.2]|
| GI_MAN| 7| 10| 121.15| [121.15]|
| GI_MAN| 7| 11| 129.0| [129.0]|
| GI_MAN| 7| 12| 125.0| [125.0]|
| GI_MAN| 7| 13| 125.0| [125.0]|
| GI_MAN| 7| 21| 127.0| [127.0]|
| GI_MAN| 7| 22| 126.0| [126.0]|
+----------------+-----------------+--------+--------------+--------------+
but problem here is I can't pivot it on rand_dbl_Vect.
So my question is:
1. Is any of the 2 approaches is correct way of achieving the desired output, if so then how can I proceed further to get the desired result?
2. What other way I can proceed with so the code is optimal and performance is good?
This
import numpy as np
np.array(gi_man_df.select('rand_double').collect())
produces
array([[ 124.2 ],
[ 121.15],
.........])
To convert the spark df to numpy array, first convert it to pandas and then apply the to_numpy() function.
spark_df.select(<list of columns needed>).toPandas().to_numpy()

Join two data frames, select all columns from one and some columns from the other

Let's say I have a spark data frame df1, with several columns (among which the column id) and data frame df2 with two columns, id and other.
Is there a way to replicate the following command:
sqlContext.sql("SELECT df1.*, df2.other FROM df1 JOIN df2 ON df1.id = df2.id")
by using only pyspark functions such as join(), select() and the like?
I have to implement this join in a function and I don't want to be forced to have sqlContext as a function parameter.
Asterisk (*) works with alias. Ex:
from pyspark.sql.functions import *
df1 = df1.alias('df1')
df2 = df2.alias('df2')
df1.join(df2, df1.id == df2.id).select('df1.*')
Not sure if the most efficient way, but this worked for me:
from pyspark.sql.functions import col
df1.alias('a').join(df2.alias('b'),col('b.id') == col('a.id')).select([col('a.'+xx) for xx in a.columns] + [col('b.other1'),col('b.other2')])
The trick is in:
[col('a.'+xx) for xx in a.columns] : all columns in a
[col('b.other1'),col('b.other2')] : some columns of b
Without using alias.
df1.join(df2, df1.id == df2.id).select(df1["*"],df2["other"])
Here is a solution that does not require a SQL context, but maintains the metadata of a DataFrame.
a = sc.parallelize([['a', 'foo'], ['b', 'hem'], ['c', 'haw']]).toDF(['a_id', 'extra'])
b = sc.parallelize([['p1', 'a'], ['p2', 'b'], ['p3', 'c']]).toDF(["other", "b_id"])
c = a.join(b, a.a_id == b.b_id)
Then, c.show() yields:
+----+-----+-----+----+
|a_id|extra|other|b_id|
+----+-----+-----+----+
| a| foo| p1| a|
| b| hem| p2| b|
| c| haw| p3| c|
+----+-----+-----+----+
I believe that this would be the easiest and most intuitive way:
final = (df1.alias('df1').join(df2.alias('df2'),
on = df1['id'] == df2['id'],
how = 'inner')
.select('df1.*',
'df2.other')
)
drop duplicate b_id
c = a.join(b, a.a_id == b.b_id).drop(b.b_id)
Here is the code snippet that does the inner join and select the columns from both dataframe and alias the same column to different column name.
emp_df = spark.read.csv('Employees.csv', header =True);
dept_df = spark.read.csv('dept.csv', header =True)
emp_dept_df = emp_df.join(dept_df,'DeptID').select(emp_df['*'], dept_df['Name'].alias('DName'))
emp_df.show()
dept_df.show()
emp_dept_df.show()
Output for 'emp_df.show()':
+---+---------+------+------+
| ID| Name|Salary|DeptID|
+---+---------+------+------+
| 1| John| 20000| 1|
| 2| Rohit| 15000| 2|
| 3| Parth| 14600| 3|
| 4| Rishabh| 20500| 1|
| 5| Daisy| 34000| 2|
| 6| Annie| 23000| 1|
| 7| Sushmita| 50000| 3|
| 8| Kaivalya| 20000| 1|
| 9| Varun| 70000| 3|
| 10|Shambhavi| 21500| 2|
| 11| Johnson| 25500| 3|
| 12| Riya| 17000| 2|
| 13| Krish| 17000| 1|
| 14| Akanksha| 20000| 2|
| 15| Rutuja| 21000| 3|
+---+---------+------+------+
Output for 'dept_df.show()':
+------+----------+
|DeptID| Name|
+------+----------+
| 1| Sales|
| 2|Accounting|
| 3| Marketing|
+------+----------+
Join Output:
+---+---------+------+------+----------+
| ID| Name|Salary|DeptID| DName|
+---+---------+------+------+----------+
| 1| John| 20000| 1| Sales|
| 2| Rohit| 15000| 2|Accounting|
| 3| Parth| 14600| 3| Marketing|
| 4| Rishabh| 20500| 1| Sales|
| 5| Daisy| 34000| 2|Accounting|
| 6| Annie| 23000| 1| Sales|
| 7| Sushmita| 50000| 3| Marketing|
| 8| Kaivalya| 20000| 1| Sales|
| 9| Varun| 70000| 3| Marketing|
| 10|Shambhavi| 21500| 2|Accounting|
| 11| Johnson| 25500| 3| Marketing|
| 12| Riya| 17000| 2|Accounting|
| 13| Krish| 17000| 1| Sales|
| 14| Akanksha| 20000| 2|Accounting|
| 15| Rutuja| 21000| 3| Marketing|
+---+---------+------+------+----------+
I got an error: 'a not found' using the suggested code:
from pyspark.sql.functions import col df1.alias('a').join(df2.alias('b'),col('b.id') == col('a.id')).select([col('a.'+xx) for xx in a.columns] + [col('b.other1'),col('b.other2')])
I changed a.columns to df1.columns and it worked out.
function to drop duplicate columns after joining.
check it
def dropDupeDfCols(df):
newcols = []
dupcols = []
for i in range(len(df.columns)):
if df.columns[i] not in newcols:
newcols.append(df.columns[i])
else:
dupcols.append(i)
df = df.toDF(*[str(i) for i in range(len(df.columns))])
for dupcol in dupcols:
df = df.drop(str(dupcol))
return df.toDF(*newcols)
I just dropped the columns I didn't need from df2 and joined:
sliced_df = df2.select(columns_of_interest)
df1.join(sliced_df, on=['id'], how='left')
**id should be in `columns_of_interest` tho
df1.join(df2, ['id']).drop(df2.id)
If you need multiple columns from other pyspark dataframe then you can use this
based on single join condition
x.join(y, x.id == y.id,"left").select(x["*"],y["col1"],y["col2"],y["col3"])
based on multiple join condition
x.join(y, (x.id == y.id) & (x.no == y.no),"left").select(x["*"],y["col1"],y["col2"],y["col3"])
I very much like Xehron's answer above, and I suspect it's mechanically identical to my solution. This works in databricks, and presumably works in a typical spark environment (replacing keyword "spark" with "sqlcontext"):
df.createOrReplaceTempView('t1') #temp table t1
df2.createOrReplaceTempView('t2') #temp table t2
output = (
spark.sql("""
select
t1.*
,t2.desired_field(s)
from
t1
left (or inner) join t2 on t1.id = t2.id
"""
)
)
You could just make the join and after that select the wanted columns https://spark.apache.org/docs/latest/api/python/pyspark.sql.html?highlight=dataframe%20join#pyspark.sql.DataFrame.join