I have a set of 12 IMUs mounted on the end effector of my robot arm which I read using a micro controller to determine it's movement. With my controller I can read two sensors simultaneously using direct memory access. After acquiring the measurements I would like to fuse them to make up for the sensor error and generate a more reliable reading than having only one sensor.
After some research my understanding is that I can use a Kalman filter to reach my desired outcome, but still have the problem of all the sensor values having different time stamps, since I can read only two at a time and even if both time stamps will be synchronized perfectly, the next pair will have a different time stamp if only in the µs range.
Now I know controls engineering principles but am completely new to the topic of sensor fusion and google presents me with too many results to find a solution in a reasonable amount of time.
Therefore my question, can anybody point me into the right direction by naming me a certain keyword I need to look for or literature I should work through to better understand that topic, please?
Thank you!
The topic you are dealing with is not an easy one. Try to have a look at the multi-rate kalman filters.
The idea is that you design different kalman filters for each combination of sensor that you can available at the same time, and use it when you have the data from those sensors, while the system state is passed between the various filters.
Related
I know they are not accessible now. Nest can clearly see this data. I have 2 additional sensors (thermostat 1st floor, 1 sensor basement, 1 sensor 2nd floor) and want to log/measure and potentially even control based of those and the Nest app is quite poor with this. (ie you can only change the sensor you are using 4x in a day, at specific times).
In real-life usage, where I am on different stories at different times of day (which don't correspond with the canned choices) it would be nice to be able to read these and potentially control. In some cases I want to just reduce the difference in temperature between the areas, others I might want to make sure my kids are comfortable during naps but without access to the sensor data it's quite useless...
It is clear that the sensors aren't currently supported by the API but this is where it redirects me to ask questions! Any idea?
EDIT: ok so it looks like technically you can read the sensor data but only when the sensor is set as the current sensor. Listed this and other findings so far here: https://ssprod.me/blog/2022/11/14/a-closer-look-at-the-nest-thermostat/
I am new in the world of freertos, I have to do a project that consists of an automatic alcohol dispenser that measures temperature. The parts/sensors of my project are:
DHT22 for temperature (I know its not ideal but its the only one
that I have).
Hc-sr04 for distance measurement (ultrasound).
I2c display 16x2 to show the temperature.
Buzzer to make sound.
Servo to dispense alcohol.
The idea of the project is that when someone comes within 15 cm of the device, the temperature is displayed on the screen, the servo moves and can dispense alcohol, and the buzzer makes a little sound.
As I understand it, I have to create a task for each activity. One to measure temperature and possibly send that information to a queue, another to read the queue and display it on the screen, another to make the sound with the buzzer, another to measure distance with the ultrasound, and another to move the servo.
This is how I was asked to do it, but my question is what is the best way to organize the tasks?
How do I make it so that ...
first the distance is measured,
then the temperature is measured,
then it is shown on the display,
the servo is moved and the sound is made?
What is the best way to communicate between tasks (when a task measures less than 15 cm, tell another task to measure temperature, and then it is shown on the display, and the servo moves and makes the sound)?
I would like to see how you think about it and it would help me a lot to know.
I’m very new to the subject and I’m having a hard time thinking which is the best way. I would appreciate simple solutions that not involve complicated stuff as I'm having a hard time with freeRTOS.
This seems like a fairly simple system, as all work can be done sequentially (i.e. one thing happens after another). You certainly don't need to use dedicated tasks for activities which are done sequentially. In fact, the simplest architecture by far is to have a single task, running in a loop, doing everything. I strongly suggest you start with that approach and build something that works.
Then after you have something that works sequentially in a single task, re-consider your options. It might be the perfect architecture, it might need minor adjustments. You'll be in a much better position to judge.
How to stabilize the RSSI (Received Signal Strength Indicator) of low energy Bluetooth beacons (BLE) for more accurate distance calculation?
We are trying to develop an indoor navigation system and came across this problem where the RSSI is fluctuating so much that, the distance estimation is nowhere near the correct value. We tried using an advance average calculator but to no use,
The device is constantly getting RSSI values, how to filter them, how to get the mean value, I am completely lost, please help.
Can anyone suggest any npm library or point in the right direction, I have been searching for many days but have not gotten anywhere.
FRONT END: ReactNative BACKEND: NODEJS
In addition to the answer of #davidgyoung, we would like to point out that any filtering method is a compromise between quality of noise level reduction and the time-lag introduced by this filtration (depending on the characteristic filtering time you use in your method). As was pointed by #davidgyoung, if you take characteristic filtering period T you will get an average time-lag of about T/2.
Thus, I think the best approach to solve your problem is not to try to find the best filtering method but to make changes on the transmitter’s end itself.
First you can increase the number of signals, transmitter per second (most of the modern beacon allow to do so by using manufacturer applications and API).
Secondly, you can increase beacon's power (which is also usually one of the beacon’s settings), which usually reduces signal-to-noise ratio.
Finally, you can compare beacons from different vendors. At Navigine company we experimented and tested lots of different beacons from multiple manufacturers, and it appears that signal-to-noise ratio can significantly vary among existing manufacturers. From our side, we recommend taking a look at kontakt.io beacons (https://kontakt.io/) as an one of the recognized leaders with 5+ years experience in the area.
It is unlikely that you will find a pre-built package that will do what you want as your needs are pretty specific. You will most likely have to wtite your own filtering code.
A key challenge is to decide the parameters of your filtering, as an indoor nav use case often is impacted by time lag. If you average RSSI over 30 seconds, for example, the output of your filter will effectively give you the RSSI of where a moving object was on average 15 seconds ago. This may be inappropriate for your use case if dealing with moving objects. Reducing the averaging interval to 5 seconds might help, but still introduces time lag while reducing smoothing of noise. A filter called an Auto-Regressive Moving Average Filter might be a good choice, but I only have an implementation in Java so you would need to translate to JavaScript.
Finally, do not expect a filter to solve all your problems. Even if you smooth out the noise on the RSSI you may find that the distance estimates are not accurate enough for your use case. Make sure you understand the limits of what is possible with this technology. I wrote a deep dive on this topic here.
This question somewhat overlaps knowledge on geospatial information systems, but I think it belongs here rather than GIS.StackExchange
There are a lot of applications around that deal with GPS data with very similar objects, most of them defined by the GPX standard. These objects would be collections of routes, tracks, waypoints, and so on. Some important programs, like GoogleMaps, serialize more or less the same entities in KML format. There are a lot of other mapping applications online (ridewithgps, strava, runkeeper, to name a few) which treat this kind of data in a different way, yet allow for more or less equivalent "operations" with the data. Examples of these operations are:
Direct manipulation of tracks/trackpoints with the mouse (including drawing over a map);
Merging and splitting based on time and/or distance;
Replacing GPS-collected elevation with DEM/SRTM elevation;
Calculating properties of part of a track (total ascent, average speed, distance, time elapsed);
There are some small libraries (like GpxPy) that try to model these objects AND THEIR METHODS, in a way that would ideally allow for an encapsulated, possibly language-independent Library/API.
The fact is: this problem is around long enough to allow for a "common accepted standard" to emerge, isn't it? In the other hand, most GIS software is very professionally oriented towards geospatial analyses, topographic and cartographic applications, while the typical trip-logging and trip-planning applications seem to be more consumer-hobbyist oriented, which might explain the quite disperse way the different projects/apps treat and model the problem.
Thus considering everything said, the question is: Is there, at present or being planned, a standard way to model canonicaly, in an Object-Oriented way, the most used GPS/Tracklog entities and their canonical attributes and methods?
There is the GPX schema and it is very close to what I imagine, but it only contains objects and attributes, not methods.
Any information will be very much appreciated, thanks!!
As far as I know, there is no standard library, interface, or even set of established best practices when it comes to storing/manipulating/processing "route" data. We have put a lot of effort into these problems at Ride with GPS and I know the same could be said by the other sites that solve related problems. I wish there was a standard, and would love to work with someone on one.
GPX is OK and appears to be a sort-of standard... at least until you start processing GPX files and discover everyone has simultaneously added their own custom extensions to the format to deal with data like heart rate, cadence, power, etc. Also, there isn't a standard way of associating a route point with a track point. Your "bread crumb trail" of the route is represented as a series of trkpt elements, and course points (e.g. "turn left onto 4th street") are represented in a separate series of rtept elements. Ideally you want to associate a given course point with a specific track point, rather than just giving the course point a latitude and longitude. If your path does several loops over the same streets, it can introduce some ambiguity in where the course points should be attached along the route.
KML and Garmin's TCX format are similar to GPX, with their own pros and cons. In the end these formats really only serve the purpose of transferring the data between programs. They do not address the issue of how to represent the data in your program, or what type of operations can be performed on the data.
We store our track data as an array of objects, with keys corresponding to different attributes such as latitude, longitude, elevation, time from start, distance from start, speed, heart rate, etc. Additionally we store some metadata along the route to specify details about each section. When parsing our array of track points, we use this metadata to split a Route into a series of Segments. Segments can be split, joined, removed, attached, reversed, etc. They also encapsulate the method of trackpoint generation, whether that is by interpolating points along a straight line, or requesting a path representing directions between the endpoints. These methods allow a reasonably straightforward implementation of drag/drop editing and other common manipulations. The Route object can be used to handle operations involving multiple segments. One example is if you have a route composed of segments - some driving directions, straight lines, walking directions, whatever - and want to reverse the route. You can ask each segment to reverse itself, maintaining its settings in the process. At a higher level we use a Map class to wire up the interface, dispatch commands to the Route(s), and keep a series of snapshots or transition functions updated properly for sensible undo/redo support.
Route manipulation and generation is one of the goals. The others are aggregating summary statistics are structuring the data for efficient visualization/interaction. These problems have been solved to some degree by any system that will take in data and produce a line graph. Not exactly new territory here. One interesting characteristic of route data is that you will often have two variables to choose from for your x-axis: time from start, and distance from start. Both are monotonically increasing, and both offer useful but different interpretations of the data. Looking at the a graph of elevation with an x-axis of distance will show a bike ride going up and down a hill as symmetrical. Using an x-axis of time, the uphill portion is considerably wider. This isn't just about visualizing the data on a graph, it also translates to decisions you make when processing the data into summary statistics. Some weighted averages make sense to base off of time, some off of distance. The operations you end up wanting are min, max, weighted (based on your choice of independent var) average, the ability to filter points and perform a filtered min/max/avg (only use points where you were moving, ignore outliers, etc), different smoothing functions (to aid in calculating total elevation gain for example), a basic concept of map/reduce functionality (how much time did I spend between 20-30mph, etc), and fixed window moving averages that involve some interpolation. The latter is necessary if you want to identify your fastest 10 minutes, or 10 minutes of highest average heartrate, etc. Lastly, you're going to want an easy and efficient way to perform whatever calculations you're running on subsets of your trackpoints.
You can see an example of all of this in action here if you're interested: http://ridewithgps.com/trips/964148
The graph at the bottom can be moused over, drag-select to zoom in. The x-axis has a link to switch between distance/time. On the left sidebar at the bottom you'll see best 30 and 60 second efforts - those are done with fixed window moving averages with interpolation. On the right sidebar, click the "Metrics" tab. Drag-select to zoom in on a section on the graph, and you will see all of the metrics update to reflect your selection.
Happy to answer any questions, or work with anyone on some sort of standard or open implementation of some of these ideas.
This probably isn't quite the answer you were looking for but figured I would offer up some details about how we do things at Ride with GPS since we are not aware of any real standards like you seem to be looking for.
Thanks!
After some deeper research, I feel obligated, for the record and for the help of future people looking for this, to mention the pretty much exhaustive work on the subject done by two entities, sometimes working in conjunction: ISO and OGC.
From ISO (International Standards Organization), the "TC 211 - Geographic information/Geomatics" section pretty much contains it all.
From OGS (Open Geospatial Consortium), their Abstract Specifications are very extensive, being at the same time redundant and complimentary to ISO's.
I'm not sure it contains object methods related to the proposed application (gps track and waypoint analysis and manipulation), but for sure the core concepts contained in these documents is rather solid. UML is their schema representation of choice.
ISO 6709 "[...] specifies the representation of coordinates, including latitude and longitude, to be used in data interchange. It additionally specifies representation of horizontal point location using coordinate types other than latitude and longitude. It also specifies the representation of height and depth that can be associated with horizontal coordinates. Representation includes units of measure and coordinate order."
ISO 19107 "specifies conceptual schemas for describing the spatial characteristics of geographic features, and a set of spatial operations consistent with these schemas. It treats vector geometry and topology up to three dimensions. It defines standard spatial operations for use in access, query, management, processing, and data exchange of geographic information for spatial (geometric and topological) objects of up to three topological dimensions embedded in coordinate spaces of up to three axes."
If I find something new, I'll come back to edit this, including links when available.
I'm using GPS units and mobile computers to track individual pedestrians' travels. I'd like to in real time "clean" the incoming GPS signal to improve its accuracy. Also, after the fact, not necessarily in real time, I would like to "lock" individuals' GPS fixes to positions along a road network. Have any techniques, resources, algorithms, or existing software to suggest on either front?
A few things I am already considering in terms of signal cleaning:
- drop fixes for which num. of satellites = 0
- drop fixes for which speed is unnaturally high (say, 600 mph)
And in terms of "locking" to the street network (which I hear is called "map matching"):
- lock to the nearest network edge based on root mean squared error
- when fixes are far away from road network, highlight those points and allow user to use a GUI (OpenLayers in a Web browser, say) to drag, snap, and drop on to the road network
Thanks for your ideas!
I assume you want to "clean" your data to remove erroneous spikes caused by dodgy readings. This is a basic dsp process. There are several approaches you could take to this, it depends how clever you want it to be.
At a basic level yes, you can just look for really large figures, but what is a really large figure? Yeah 600mph is fast, but not if you're in concorde. Whilst you are looking for a value which is "out of the ordinary", you are effectively hard-coding "ordinary". A better approach is to examine past data to determine what "ordinary" is, and then look for deviations. You might want to consider calculating the variance of the data over a small local window and then see if the z-score of your current data is greater than some threshold, and if so, exclude it.
One note: you should use 3 as the minimum satellites, not 0. A GPS needs at least three sources to calculate a horizontal location. Every GPS I have used includes a status flag in the data stream; less than 3 satellites is reported as "bad" data in some way.
You should also consider "stationary" data. How will you handle the pedestrian standing still for some period of time? Perhaps waiting at a crosswalk or interacting with a street vendor?
Depending on what you plan to do with the data, you may need to supress those extra data points or average them into a single point or location.
You mention this is for pedestrian tracking, but you also mention a road network. Pedestrians can travel a lot of places where a car cannot, and, indeed, which probably are not going to be on any map you find of a "road network". Most road maps don't have things like walking paths in parks, hiking trails, and so forth. Don't assume that "off the road network" means the GPS isn't getting an accurate fix.
In addition to Andrew's comments, you may also want to consider interference factors such as multipath, and how they are affected in your incoming GPS data stream, e.g. HDOPs in the GSA line of NMEA0183. In my own GPS controller software, I allow user specified rejection criteria against a range of QA related parameters.
I also tend to work on a moving window principle in this regard, where you can consider rejecting data that represents a spike based on surrounding data in the same window.
Read the posfix to see if the signal is valid (somewhere in the $GPGGA sentence if you parse raw NMEA strings). If it's 0, ignore the message.
Besides that you could look at the combination of HDOP and the number of satellites if you really need to be sure that the signal is very accurate, but in normal situations that shouldn't be necessary.
Of course it doesn't hurt to do some sanity checks on GPS signals:
latitude between -90..90;
longitude between -180..180 (or E..W, N..S, 0..90 and 0..180 if you're reading raw NMEA strings);
speed between 0 and 255 (for normal cars);
distance to previous measurement matches (based on lat/lon) matches roughly with the indicated speed;
timedifference with system time not larger than x (unless the system clock cannot be trusted or relies on GPS synchronisation :-) );
To do map matching, you basically iterate through your road segments, and check which segment is the most likely for your current position, direction, speed and possibly previous gps measurements and matches.
If you're not doing a realtime application, or if a delay in feedback is acceptable, you can even look into the 'future' to see which segment is the most likely.
Doing all that properly is an art by itself, and this space here is too short to go into it deeply.
It's often difficult to decide with 100% confidence on which road segment somebody resides. For example, if there are 2 parallel roads that are equally close to the current position it's a matter of creative heuristics.