USRP N210 overflows in virtual machine using GnuRadio - virtual-machine

I am using the USRP N210 through a Debian (4.19.0-6-amd64 #1 SMP Debian 4.19.67-2+deb10u1) VM and run very quickly into processing overflow. GnuRadio-Companion is printing the letter "D" the moment one of the CPUs load is reaching 100 %. This was tested by increasing the number of taps for a low-pass filter, as shown in the picture with a sampling rate of 6.25 MHz.
I have done all instructions on How to tune an USRP, except the CPU governor. This is because I am not able to do this due to a missing driver reported by cpufreq-info. The exact output is
No or unknown cpufreq driver is active on this CPU.
The output of the lscpu command is also shown in a picture.
Has anyone an idea how I can resolve the problem? Or is GnuRadio just not fully supported for VMs?

Dropping packets when your CPU can't keep up is expected. It's the direct effect of that.
The problem is most likely to be not within your VM, but with the virtualizer.
Virtualization adds some overhead, and whilst modern virtualizers have gotten pretty good at it, you're requesting that
an application with hard real-time requirements runs
under high network load.
This might take away CPU cycles on your host side that your VM doesn't even know of – your 100% is less than it looks!
So, first of all, make sure your virtualizer does as little things with the network traffic as possible. Especially, no NAT, but best-case hardware bridging.
Then, the freq-xlating FIR definitely isn't the highest-performing block. Try using a rotator instead, followed by an FFT FIR. In your case, let that FIR decimate by a factor of 2 – you've done enough low-pass filtering to reduce the sampling rate without getting aliases.
Lastly, might be a good idea to use a newer version of GNU Radio. In Debian testing, apt will get you a 3.8 release series GNU Radio.

Related

Virtualize specific environment (CPU, cache, clock)

I have written some code that's supposed to run on a certain hardware-setup. I'd like to test it to get some preliminary metrics, but without buying the hardware setup, since it's very expensive.
At first I, naively, thought I could set some specifications to the platform when creating a virtual machine through a manager such as VMware Workstation, but it seems like it's not possible.
What ways do you believe would be the best to emulate a certain environment? Of course, RAM, disk space and OS should be fairly easy, but limiting the CPU seems to be the general issue.
I'm trying to simulate the Intel Atom® Processor E3845, so I have some requirements to the maximum cores, cache size and of course the clock frequency.
The closest I've found so far would be to install WMware ESXi on a piece of hardware and limit the CPU. But I'm unsure if this is the best way. Further, I've never really worked with this before, why I'm unsure if I can limit the cache and so forth. Simply "down-scaling" the metrics does not feel like a good solution when we are rather dependant on the cache (that is, we've seen issues with certain sizes and speeds).
I Would love to hear some inputs if you have any.

how to prevent cpu usage from changing timing in labview?

I'm trying to write a code in which every 1 ms a number plused one , should be replaced the old number . (something like a chronometer ! ) .
the problem is whenever the cpu usage increases because of some other programs running on the pc, this 1 milliseconds is also increased and timing in my program changes !
is there any way to prevent cpu load changes affecting timing in my program ?
It sounds as though you are trying to generate an analogue output waveform with a digital-to-analogue converter card using software timing, where your software is responsible for determining what value should be output at any given time and updating the output accordingly.
This is OK for stationary or low-speed signals but you are trying to do it at 1 ms intervals, in other words to output 1000 samples per second or 1 ks/s. You cannot do this reliably on a desktop operating system - there are too many other processes going on which can use CPU time and block your program from running for many milliseconds (or even seconds, e.g. for network access).
Here are a few ways you could solve this:
Use buffered, hardware-clocked output if your analogue output device supports it. Instead of writing one sample at a time, you send the device a waveform or array of samples and it outputs them at regular intervals using a timing signal generated in hardware. Unfortunately, low-end DAQ devices often don't support hardware-clocked output.
Instead of expecting the loop that writes your samples to the AO to run every millisecond, read LabVIEW's Tick Count (ms) value in the loop and use that as an index to your array of samples: rather than trying to output every sample, your code will now say 'what time is it now, and therefore what should the output be?' That won't give you a perfect signal out but at least now it should keep the correct frequency rather than be 'slowed down' - instead you will see glitches imposed on the signal whenever the loop can't keep up. This is easy to test and maybe it will be adequate for your needs.
Use a real-time operating system instead of a desktop OS. In the case of LabVIEW this would mean using the Real-Time software module and either a National Instruments hardware device that supports RT, such as the CompactRIO series, or installing the RT OS on a dedicated PC if the hardware is compatible. This is not a cheap option, obviously (unless it's strictly for personal, home use). In any case you would need to have an RT-compatible driver for your output device.
Use your computer's sound output as the output device. LabVIEW has functions for buffered sound output and you should be able to get reliable results. You'll need to upsample your signal to one of the sound output's available sample rates, probably 44.1 ks/s. The drawbacks are that the output level is limited in range and is not calibrated, and will probably be AC-coupled so you can't output a DC or very low-frequency signal. However if the level is OK for what you want to connect it to, or you can add suitable signal conditioning, this could be a neat solution. If you need the output level to be calibrated you could simultaneously measure it with your DAQ card and scale the sound waveform you're outputting to keep it correct.
The answer to your question is "not on a desktop computer." This is why products like LabVIEW Real-Time and dedicated deterministic hardware exist: you need a computer built around dedication to a particular process in order to consistently serve that process. Every application in a regular Windows/Mac/Linux desktop system has the problem you are seeing of potentially being interrupted by other system processes, particularly in its UI layer.
There is no way to prevent cpu load changes from affecting timing in your program unless the computer has a realtime clock.
If it doesn't have a realtime clock, there is no reason to expect it to behave deterministically. Do you need for your program to run at that pace?

GNU Radio and bladeRF on Raspberry Pi (simple FSK system)

I am having a problem porting a GNU Radio setup from PC (windows 10, USB3) to Raspberry Pi 2 (USB2). USB bandwidth and CPU should not be a problem I think (only around 30% utilization while running). Essentially it looks like the RPi is 'pausing' during transmission, while the PC is not. The receiver is running on PC in both cases. I am including a pic of what I see after the FSK demod when running transmitter on PC vs Pi (circled 'pause' area), as well as a picture of my (admittedly sloppy) schematic. Any help/tips is greatly appreciated.gnuradio schemreceived signals
Edit: It appears it may actually be processing limitations. Switching from 9400 baud to 2400 baud makes the issue go away. If anyone has experience with GNURadio...am I doing anything overly inefficient or should I just drop comm rate?
The first thing I would do would be to lower your sample rates.
You don't need 1.5Ms/s if you are going to keep only the lowest 32k in your low pass filter.
Then you could do the same for your second stage after the quadrature demod if it's not enough (by the way, the sample rate of your second low pass filter does not seem to match the actual sample rate of the stage which is still 1.5Ms/s if I'm not mistaken).
Anyway, Gnuradio uses a lot of processing power so try not to use a sampling rate way above what you actually need ;)
In your case, you could cut the incoming sample rate down to 64k (say 80 for safety). 18 times less samples to process might do the trick :)

Why is RDTSC a virtualized instruction on modern processors?

I am studying RDTSC and learning about how it is virtualized for the purposes of virtual machines like VirtualBox and VMWare. Why did Intel/AMD go to all the trouble of virtualizing this instruction?
I feel like it can be easily simulated with a trap and it's not exactly a super-common instruction (I tested and there's no noticable slow-down for general usage in a virtual machine where hardware RDTSC virtualization is disabled).
However, I know Intel/AMD wouldn't have gone to all the trouble to add this instruction to the virtualizing hardware unless it was important to able to execute very fast.
Does anyone know why?
Its common to use RDTSC to get fine-grained timing information, where the overhead of a virtualization trap would be quite significant. Most common use is to have two RDTSC instructions with a small amount of code between them, taking the difference of the times as the elapsed time (number of cycles) for the code sequence. So even the overhead of pipeline drains/flushes is quite significant.
Also, since all the instruction does is read a continuously running counter, virtualizing it is quite easy -- the hardware only needs to allow saving/reloading the counter value on VM context switches, and not anything special for the RDTSC instruction itself.
VMs should be able to have separate TSCs because they start up at different times. The physical CPU just has one, so something is needed to at least get individual, per-VM TSC offsets.
Also, since VMs don't own the underlying physical CPUs fully, that is, they don't get to execute on them all the time, their TSCs should also somehow reflect the "on/off" periods and it is desirable that they don't change abruptly in value w.r.t. actual time, which the VMs should still get right from the host OS, because there's a lot of software that is virtualization-unready and can break when the numbers are too off.
I think these are the reasons why RDTSC is virtualized. But whatever you do, meeting conflicting requirements is tough and they complicate matters. You can't hide virtualization and have VMs run at near-native speed at the same time. There are trade offs and some things have to give in.

How To Simulate Lower CPU Processor Machines For Browser Testing

We have some users which are using lower-CPU powered machines and they're encountering slow response times using our web application. Is there any way for me to do testing so that I can simulate lower CPU rates?
For example, I have 2.3 Ghz computing power, can I lower it to 1.6 Ghz or lower so that I may be able to test it?
BTW, our customers are using Windows. I have to simulate low computing power on Internet Explorer as browser.
Most new CPUs multiplier can easily be lowered (Intel: Speedstep, AMD: PowerNow!). This is used to save power. With RMclock you can manually adjust your multiplier and thus lower your frequency and make your pc slower. I use this tool myself so I can tell you that it works.
http://cpu.rightmark.org/products/rmclock.shtml
The virtual machine Bochs(pronounced boxes) allows you to set a instructions per second directive. It's probably the slowest emulator out there as it is though...
Create some virtual machines.
You can use VirtualPC or VirtualBox both are free.
I would recommend to start something on the background which eats up all your processor cycles.
A program which finds primenumbers or something similar.
Another slight option in addition to those above is to boot windows in a lower resource config. Go to the start menu,, select run and type MSCONFIG. You can go to the boot tab, click on advanced options and limit the memory and number of of processsors. It's not as robust as the above, but it does give you another option.
Lowering the CPU clock doesn't always give expected results.
Newer CPUs feature architecture improvements which make them more efficient on an equvialent clock basis than older chips. Incidentally, because of this virtual machines are a bad way of testing performance for "older" tech as well.
Your best bet is to simply buy a couple of older machines. Using similar RAM (types and amounts), processor, motherboard chipsets, hard drives, and video cards. All of which feed into the total performance of the machine itself.
I bring the other components up because changing just one of them can have an impact on even browser performance. A prime example is memory. If your clients are constrained to something like 512MB of RAM, the machines could be performing a lot of hard drive access for VM swaps, even for just running the browser. In this situation downgrading the clock speed on your processor while still retaining your 2GB (assuming) of RAM would still not perform anywhere near the same even if everything else was equal.
Isak Savo'sanswer works, but can be a bit finicky, as the modern tpl is going to try and limit cpu load as much as possible. When I tested it out, It was hard (though possible with some testing) to consistently get the types of cpu usages I wanted.
Then I remembered, http://www.cpukiller.com/, which does this already. Highly recommended. As an aside, I found this util from playing old 90s games on modern machines, back when frame rate was pegged to cpu clock time, making playing them on modern computers way too fast. Great utility.
Another big difference between high-performance and low-performance CPUs is the number of cores available. This can realistically differ by a factor of 4, way more than the difference in clock frequency you're likely to encounter.
You can solve this by setting the thread affinity. Even IE6 will use 13 threads just to show google.com. That means it will benefit from a multi-core CPU. But if you set the thread affinity to one core only, all 13 IE threads will have to share that one core.
I understand that this question is pretty old, but here are some receipts I personally use (not only for Web development):
BES. I'm getting some weird results while using it.
Go to Control Panel\All Control Panel Items\Power Options\Edit Plan Settings\Change Advanced Power Settings, then go to the "Processor" section and set it's maximum state to 5% (or something else). It works only if your processor supports dynamic multiplier change and ACPI driver is installed correctly.
Run Task Manager and set processor affinity to a single core (or whatever number of cores you want) for your browser's (or any other's) process. Not a best practice for browsers, because JavaScript implementations are usually single-threaded, but, as far as I see, modern browsers actually DO use multiple cores.
There are a few different methods to accomplish this.
If you're using VirtualBox, go into the Settings for the VM you want to slow the CPU speed for. Go to System > Processor, then set the Execution Cap. The percentage controls how slow it will go: lower values are slower relative to the regular speed. In practice, I've noticed the results to be choppy, although it does technically work.
It is also possible to set the CPU speed for the whole system. In the Windows 10 Settings app, go to System > Power & Sleep. Then click Additional Power Settings on the right hand side. Go to Change Plan Settings for the currently selected plan, then click Change Advanced Power Plan Settings. Scroll down to Processor Power Management and set the Maximum Processor State. Again, this is a percentage. Although this does work, I find that in practice, it doesn't have a big impact even when the percentage is set very low.
If you're dealing with a videogame that uses DirectX or OpenGL and doesn't have a framerate cap, another common method is to force Vsync on in your graphics driver settings. This will usually slow the rendering to about 60 FPS which may be enough to play at a reasonable rate. However, it will only work for applications using 3D hardware rendering specifically.
Finally: if you'd rather not use a VM, and don't want to change a system global setting, but would rather simulate an old CPU for one specific process only, then I have my own program to do that called Old CPU Simulator.
The main brain of the operation is a command line tool written in C++, but there is also a GUI wrapper written in C#. The GUI requires .NET Framework 4.0. The default settings should be fine in most cases - just select the CPU you'd like to simulate under Target Rate, then hit New and browse for the program you'd like to run.
https://github.com/tomysshadow/OldCPUSimulator (click the Releases tab on the right for binaries.)
The concept is to suspend and resume the process at a precise rate, and because it happens so quickly the process will appear to just be running slowly. For example, by suspending a process for 3 milliseconds, then resuming it for 1 millisecond, it will appear to be running at 25% speed. By controlling the ratio of time suspended vs. time resumed, it is possible to simulate different speeds. This is completely API agnostic (it doesn't hook DirectX, OpenGL, etc. it'll work with a command line program if you want.)
Old CPU Simulator does not ask for a percentage, but rather, the clock speed to simulate (which it calls the Target Rate.) It then automatically determines, based on your CPU's real clock speed, the percentage to use. Although clock speed is not the only factor that has improved computer performance over time (there are also SSDs, faster GPUs, more RAM, multithreaded performance, etc.) it's a good enough approximation to get fairly consistent results across machines given the same Target Rate. It also supports other options that may help with consistency, such as setting the process affinity to one.
It implements three different methods of suspending and resuming a process and will use the best available: NtSuspendProcess, NtQuerySystemInformation, or Toolhelp Snapshots. It also uses timeBeginPeriod and timeEndPeriod to achieve high precision timing without busy looping. Note that this is not an emulator; the binary still runs natively. If you like, you can view the source to see how it's implemented - it's not a large project. On my machine, Old CPU Simulator uses less than 1% CPU and less than 1 MB of memory, so the program itself is quite efficient (unlike running intensive programs to intentionally slow the CPU.)