AVR I2C trouble - interrupt

I am trying to communicate using I2C with AT90CAN128, But it is not going further than following while loop:
while(!(TWCR & (1<<TWINT)));
It remains in the while loop.
According to me, it is not able to set TWINT flag.
void TWI_start(void)
{
TWCR= (1<<TWINT)|(1<<TWSTA)|(1<<TWEN);
while(!(TWCR & (1<<TWINT)));`enter code here`
while((TWSR & 0xF8)!= 0x08);
}
Any suggestions?

Probably a hardware problem.
The TWI Master tries to assert SDA and SCL and checks if both SDA and SCL are at GND. Check the connections and the value of your pull-up resistors. If the controller fails to pull the lines down, the START condition never gets registered and TWINT will never get set.

Related

Can not read data from uart with micropython and SIM7070G NB on ESP32 controller

I try to get my SIM7070G Cat-M/NB-IoT/GPRS HAT running with micropython on a ESP32 MC via UART. Unfortunately I did not find any libraries but I thought this can not be too difficult with micropython. I am working on this problem now for 3 days and do not get any response when sending commands with uart.
USB with computer:
Sending AT commands gives an answer like sending AT and receiving OK.
Micropython:
from machine import UART
from time import sleep
sleep(1)
print("activate")
p = Pin(27, Pin.OUT, Pin.PULL_UP)
sleep(0.1)
p.on()
sleep(1)
p.off()
sleep(0.5)
print("activated")
uart = UART(1, 115200,rx=9,tx=10,timeout=5000)
#uart.init(9600, bits=8, parity=None,rx=25,tx=26,stop=1)
uart.write(b'AT\r\n')
print("uart.write(b'AT\r\n')")
sleep(1)
data = uart.any()
print(str(data))
I just do not get a response. data is always 0.
What I tried:
checked connection 100 times, TX->RX and RX->TX, 5V, GND, PWR
different pins did not work
different baudrate... no difference.
Anyone a solution? That would be really great.
Link to manufacturer of SIM7070G HAT
I figured out the solution. As #hcheung sais, I have to call AT command a few times (up until 10 times) to let the module get the baudrate. It will work than properly.

STM32F103 SPI different pins does not work

I am currently working on a project with LoRaWAN technology using STM32F103C8T6 microcontroller. For LoRa I am using SPI in Full-Duplex Master mode (spi1 specifically) and in CubeIDE when you activate SPI1, automatically pins PA5, PA6 and PA7 are activated (ver1):
However, PCB is designed and printed and those pins are unfortunately busy. Because, before it was planned to use other SPI1 pins (PB3, PB4, PB5) (ver2):
So, when I use ver1, all is good, LoRa connects to server and sends data without a problem. However, when I use ver2, it does not work at all. I debugged to find where is problem and found out that, SPI read fails (when version of LoRa is read, it returns 0). Thus, ASSERT fires and code is stuck in infinite loop. I could not find any reference of difference of SPI pins in the internet.
Can anyone explain the difference of these pins? And is it possible to use ver2? Thanks beforehand.
P.S. I am using HAL Library + LMIC library (for LoRa) and the configuration of SPI are the same for both ver1 and ver2. Here is code of configuration, if needed:
void MX_SPI1_Init(void)
{
hspi1.Instance = SPI1;
hspi1.Init.Mode = SPI_MODE_MASTER;
hspi1.Init.Direction = SPI_DIRECTION_2LINES;
hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;
hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
hspi1.Init.NSS = SPI_NSS_SOFT;
hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_64;
hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
hspi1.Init.CRCPolynomial = 10;
if (HAL_SPI_Init(&hspi1) != HAL_OK)
{
Error_Handler();
}
}
P.S.S: I also gave this question in electronics stackexchange, but there was no answer there, so I decided to share the question here too.
After lots of tries, I found out that, remapped SPI1 does not work together with I2C1, because of I2C1-SMBA pin overlap with SP1 MOSI pin (PB5), even if you are not using SMBA. You can find about that here: STM32F103x8 errata chapter 2.8.7
So, I guess, I will use I2C2 for avoiding collision. The only change I should make on PCB would be redirecting I2C1 pins to I2C2 (2 pins), which is way better than redirecting SPI1 pins (3 pins) and other elements occupying ver1 (also 3) pins.

flash write efm32zg fails with while (DMA->CHENS & DMA_CHENS_CH0ENS)

I am attempting to create a boot loader which allows me to update a processor's software remotely.
I am using keil uvision compiler (V5.20.0.0).
Flash.c, startup_efm32zg.s, startup_efm32zg.c and em_dma.c configured to execute from RAM (code, Zero init data, other data) via their options/properties tabs.
Stack size configured at 0x0000 0800 via the startup_efm32zg.s Configuration Wizard tab.
Using Silicon Labs flash.c and flash.h, removed RAMFUNC as this is redundant to Keil configuration, above.
I modified the flash.c code slightly so it stays in the FLASH_write function (supposedly in RAM) until the DMA is done doing its thing.
I moved the
while (DMA->CHENS & DMA_CHENS_CH0ENS);
line down to the end of the function and added a little wrapper around it like this:
/* Activate channel 0 */
DMA->CHENS = DMA_CHENS_CH0ENS;
if (DMA->CHENS & DMA_CHENS_CH0ENS)
{
/* Start the transfer */
MSC->WRITECMD = MSC_WRITECMD_WRITETRIG;
/* Wait until transfer is done */
while (DMA->CHENS & DMA_CHENS_CH0ENS)
{
//do nothing here
}
}
FLASH_init() is called as part of the initial setup prior to entering my infinite loop.
When called upon to update the flash.....
(1): I disable interrupts.
(2): I call FLASH_erasePage starting at 0x0000 2400. This works.
(3): I call FLASH_write.
FLASH_write(&startAddress, (uint32_t *)flashBuffer, (BLOCK_SIZE/4));
Where:
startAddress = 0x00002400,
flashBuffer = a buffer of type uint8_t flashBuffer[256],
#define BLOCK_SIZE = 256.
It gets stuck here in the function:
while (DMA->CHENS & DMA_CHENS_CH0ENS)
Eventually the debugger execution stops and the Call Stack clears to be left with 0x00000000 and ALL of memory is displayed as 0xAA.
I have set aside 9K of flash for the bootloader. After a build I am told:
Program size: Code=7524 RO-data=304 RW-data=664 ZI-data=3432
Target Memory Options for Target1:
IROM1: Start[0x0] Size[0x2400]
IRAM1: Start[0x20000000] Size:[0x1000]
So .... what on earth is going on? Any help?
One of my other concerns is that it is supposed to be executing from RAM. When I look in the in the Call Stack for the Location/Value for FLASH_write after having stepped into the FLASH_write function I see 0x000008A4. This is flash!(?)
I've tried the whole RAM_FUNC thing, too with the same results.

Detecting open PC COM port from USB Virtual Com Port device

I am using an STM32F105 microcontroller with the STM32_USB-FS-Device_Lib_V3.2.1 USB library and have adapted the VCP example for our purposes (integration with RTOS and serial API).
The problem is that if the USB cable is attached, but the port is not open on the Windows host, after a few minutes the device ends up permanently re-entering the USB ISR until the port is opened and then it all starts working normally.
I have instrumented interrupt handler and can see that when the fault occurs, the ISR handler exits and then immediately re-enters. This occurs because on exit from the interrupt the IEPINT flag in OTG_FS_GINTSTS is not clear. The OTG_FS_DAINT at this time contains 0x00000002 (IEPINT1 set), while DIEPINT1 has 0x00000080 (TXFE). The line in OTGD_FS_Handle_InEP_ISR() that clears TXFE is called, but the bit either does not clear or becomes immediately reasserted. When the COM port on the host is reopened, the state of OTG_FS_GINTSTS and OTG_FS_DAINT at the end of the interrupt is always zero, and further interrupts occur at the normal rate. Note that the problem only occurs if data is being output but the host has no port open. If either the port is open or no data is output, the system runs indefinitely. I believe that the more data that is output the sooner the problem occurs, but that is anecdotal at present.
The VCP code has a state variable that takes the following enumerated values:
UNCONNECTED,
ATTACHED,
POWERED,
SUSPENDED,
ADDRESSED,
CONFIGURED
and we use the CONFIGURED state to determine whether to put data into the driver buffer for sending. However the CONFIGURED state is set when the cable is attached not when the host has the port open and an application connected. I see that when Windows does open the port, there is a burst of interrupts so it seems that some communication occurs on this event; I wonder if it is possible therefore to detect whether the host has the port open,.
I need one of two things perhaps:
To prevent the USB code from getting stuck in the ISR in the first instance
To determine whether the host has the port open from the device end, and only push data for sending when open.
Part (1) - preventing the interrupt lock-up - was facilitated by a USB library bug fix from ST support; it was not correctly clearing the TxEmpty interrupt.
After some research and assistance from ST Support, I have determined a solution to part (2) - detecting whether the host port is open. Conventionally, when a port is opened the DTR modem control line is asserted. This information is passed to a CDC class device, so I can use this to achieve my aim. It is possible for an application to change the behaviour of DTR, but this should not happen in any of the client applications that are likely to connect to this device in this case. However there is a back-up plan that implicitly assumes the port to be open if the line-coding (baud, framing) are set. In this case there is no means of detecting closure but at least it will not prevent an unconventional application from working with my device, even if it then causes it to crash when it disconnects.
Regarding ST's VCP example code specifically I have made the following changes to usb_prop.c:
1) Added the following function:
#include <stdbool.h>
static bool host_port_open = false ;
bool Virtual_Com_Port_IsHostPortOpen()
{
return bDeviceState == CONFIGURED && host_port_open ;
}
2) Modified Virtual_Com_Port_NoData_Setup() handling of SET_CONTROL_LINE_STATE thus:
else if (RequestNo == SET_CONTROL_LINE_STATE)
{
// Test DTR state to determine if host port is open
host_port_open = (pInformation->USBwValues.bw.bb0 & 0x01) != 0 ;
return USB_SUCCESS;
}
3) To allow use with applications that do not operate DTR conventionally I have also modified Virtual_Com_Port_Data_Setup() handling of SET_LINE_CODING thus:
else if (RequestNo == SET_LINE_CODING)
{
if (Type_Recipient == (CLASS_REQUEST | INTERFACE_RECIPIENT))
{
CopyRoutine = Virtual_Com_Port_SetLineCoding;
// If line coding is set the port is implicitly open
// regardless of host's DTR control. Note: if this is
// the only indicator of port open, there will be no indication
// of closure, but this will at least allow applications that
// do not assert DTR to connect.
host_port_open = true ;
}
Request = SET_LINE_CODING;
}
I found another solution by adopting CDC_Transmit_FS.
It can now be used as output for printf by overwriting _write function.
First it checks the connection state, then it tries to send over USB endport in a busy loop, which repeats sending if USB is busy.
I found out if dev_state is not USBD_STATE_CONFIGURED the USB plug is disconnected. If the plug is connected but no VCP port is open via PuTTY or termite, the second check fails.
This implementation works fine for me for RTOS and CubeMX HAL application. The busy loop is not blocking low priority threads anymore.
uint8_t CDC_Transmit_FS(uint8_t* Buf, uint16_t Len)
{
uint8_t result = USBD_OK;
// Check if USB interface is online and VCP connection is open.
// prior to send:
if ((hUsbDevice_0->dev_state != USBD_STATE_CONFIGURED)
|| (hUsbDevice_0->ep0_state == USBD_EP0_STATUS_IN))
{
// The physical connection fails.
// Or: The phycical connection is open, but no VCP link up.
result = USBD_FAIL;
}
else
{
USBD_CDC_SetTxBuffer(hUsbDevice_0, Buf, Len);
// Busy wait if USB is busy or exit on success or disconnection happens
while(1)
{
//Check if USB went offline while retrying
if ((hUsbDevice_0->dev_state != USBD_STATE_CONFIGURED)
|| (hUsbDevice_0->ep0_state == USBD_EP0_STATUS_IN))
{
result = USBD_FAIL;
break;
}
// Try send
result = USBD_CDC_TransmitPacket(hUsbDevice_0);
if(result == USBD_OK)
{
break;
}
else if(result == USBD_BUSY)
{
// Retry until USB device free.
}
else
{
// Any other failure
result = USBD_FAIL;
break;
}
}
}
return result;
}
CDC_Transmit_FS is used by _write:
// This function is used by printf and puts.
int _write(int file, char *ptr, int len)
{
(void) file; // Ignore file descriptor
uint8_t result;
result = CDC_Transmit_FS((uint8_t*)ptr, len);
if(result == USBD_OK)
{
return (int)len;
}
else
{
return EOF;
}
}
Regards
Bernhard
After so much searching and a kind of reverse engineering I finally found the method for detecting the open terminal and also it's termination. I found that in the CDC class there is three Data nodes , one is a control node and the other two are data In and data Out nodes.Now when you open a terminal a code is sent to the control node and also when you close it. all we need to do is to get those codes and by them start and stop our data transmission tasks. the code that is sent is respectively 0x21 and 0x22 for opening and closing the terminal.In the usb_cdc_if.c there is a function that receive and interpret those codes (there is a switch case and the variable cmd is the code we are talking about).that function is CDC_Control_FS . Here we are, Now all we need to do is to expand that function so that it interpret the 0x22 and 0x21 . there you are , now you know in your application whether the port is open or not.
I need one of two things perhaps:
To prevent the USB code from getting stuck in the ISR in the first instance
To determine whether the host has the port open from the device end, and only push data for sending when open.
You should attempt to do option 1 instead of 2. On Windows and Linux, it is possible to open a COM port and use it without setting the control signals, which means there is no fool-proof, cross-platform way to detect that the COM port is open.
A well programmed device will not let itself stop functioning just because the USB host stopped polling for data; this is a normal thing that should be handled properly. For example, you might change your code so that you only queue up data to be sent to the USB host if there is buffer space available for the endpoint. If there is no free buffer space, you might have some special error handling code.
I have the same requirement to detect PC port open/close. I have seen it implemented it as follows:
Open detected by:
DTR asserted
CDC bulk transfer
Close detected by:
DTR deasserted
USB "unplugged", sleep etc
This seems to be working reasonably well, although more thorough testing will be needed to confirm it works robustly.
Disclaimer: I use code generated by Cube, and as a result it works with HAL drivers. Solutions, proposed here before, don't work for me, so I have found one. It is not good, but works for some purposes.
One of indirect sign of not opened port arises when you try to transmit packet by CDC_Transmit_FS, and then wait till TxState is set to 0. If port is not opened it never happens. So my solution is to fix some timeout:
uint16_t count = 0;
USBD_CDC_HandleTypeDef *hcdc =
(USBD_CDC_HandleTypeDef*) USBD_Device.pClassData;
while (hcdc->TxState != 0) {
if (++count > BUSY_TIMEOUT) { //number of cycles to wait till it makes decision
//here it's clear that port is not opened
}
}
The problem is also, that if one tries to open port, after device has tried to send a packet, it cant be done. Therefore whole routine I use:
uint8_t waitForTransferCompletion(void) {
uint16_t count = 0;
USBD_CDC_HandleTypeDef *hcdc =
(USBD_CDC_HandleTypeDef*) USBD_Device.pClassData;
while (hcdc->TxState != 0) {
if (++count > BUSY_TIMEOUT) { //number of cycles to wait till it makes decision
USBD_Stop(&USBD_Device); // stop and
MX_USB_DEVICE_Init(); // init device again
HAL_Delay(RESET_DELAY); // give a chance to open port
return USBD_FAIL; // return fail, to send last packet again
}
}
return USBD_OK;
}
The question is, how big timeout has to be, not to interrupt transmission while port is opened. I set BUSY_TIMEOUT to 3000, and now it works.
I fixed it by checking of a variable hUsbDeviceFS.ep0_state.
It equal 5 if connected and 4 if do not connected or was disconnected.
But. There are some issue in the HAL. It equal 5 when program started.
Next steps fixed it at the begin of a program
/* USER CODE BEGIN 2 */
HAL_Delay(500);
hUsbDeviceFS.ep0_state = 4;
...
I do not have any wishes to learn the HAL - I hope this post will be seeing by developers and they will fix the HAL.
It helped me to fix my issue.

Using Port DD as GPIO on MCF5282

I’ve got a MCF5282 that I’m trying to use PDD4 as a GPIO on. In my setup code, I’ve got:
MCF5282_GPIO_DDRDD = 0x10; /* cs on dd4. */
MCF5282_GPIO_PORTDD = 0x10; /* active-low. */
And in my main loop, I’ve got:
MCF5282_GPIO_PORTDD = (mainloop_cnt & 0x10);
Which should give me a nice square wave on the oscilloscope, but the port doesn’t seem to be doing as I say. Am I missing some setup steps? I can’t find anything in the 5282 manual about a “Port DD pin-assignment register” to repurpose it from its “primary” role as DDATA.
Edit 2011-03-01: We never figured this out, we just used a different pin for GPIO.
You probably need to clear PSTEN in the Chip Configuration Register to disable DDATA, see page 27-4 of the MCF5282 and MCF5216 ColdFire Microcontroller User’s Manual